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Spectral filters in quantum mechanics: A measurement theory perspective
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Institute for Theoretical Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin,

Austin, Texas 78712-1167
~Received 28 February 2000!

We present the time-domain theory of spectral filters, starting with the basic propositions of the theory of
measurement in quantum mechanics, and develop its parameter-free implementation in the traditional correla-
tion function as well as the filter diagonalization~FD! form. The present study unifies all the time-domain
spectral filter algorithms in the literature, under a single theme which is based on the notion of selective
measurements. For specific numerical purposes, we have selected Chebyshev polynomials for developing the
time propagator and this permits us to carry out the relevent time integrals fully analytically and obtain FD
equations in a numerically convenient form. We also argue that the FD method is a particular realization of the
general spectral filter goal and it is constrained, in general, by the time-energy uncertainty regime at least as
much as the correlation-function-based method. To contrast the performance of the correlation function and the
FD methods, we have carried out the detailed numerical experiments on a model system, which suggest that the
FD method needs almost as much time propagation as the correlation function method, in order to identify the
correct spectrum. The difference lies in the procedure for the exact location of eigenvalue positions, for which
the FD method employs a diagonalization step while the correlation function method involves the location of
zeros.

PACS number~s!: 02.70.2c, 02.60.Lj, 02.60.Ed, 03.65.Ge
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I. INTRODUCTION

The quantum description of physical and chemical p
cesses frequently demands an accurate knowledge of
eigenspectrum of the corresponding system Hamilton
The conventional noniterative matrix diagonalization tec
niques are not suitable for this purpose, as most chemical
physical systems of interest involve a large rank Ham
tonian. However, iterative diagonalization methods~e.g., the
Lanczos reduction technique! have been successfully use
over the years. On the other hand, we frequently seek ei
values and eigenvectors only within a relatively small sp
tral window, such as those near the transition state or th
near the energy of the local mode overtones. The realiza
that it may be possible to extract a small window from a
region of the spectrum of the Hamiltonian, using aspectral
filter, without solving the eigenvalue problem complete
has witnessed a tremendous upsurge of interest in re
years @1–34#. In general, spectral filter theory may b
broadly classified into two complementary streams, such
those involving time-independent and time-dependent
proaches. In this context, as the eigenvalue problem is in
sically a time-independent issue in quantum mechan
Wyatt has proposed the use of the time-independent G
function in conjunction with the traditional Lanczos redu
tion technique~GFLA! to extract the eigenvalue informatio
near the test energy@30–33#. On the other hand, the adve
of time-domain theory of spectral filters is due to an imp
tant realization that ‘‘an arbitrary initial state~assumed not to
be orthogonal to any eigenstate of the system!, after evolving
under the action of the Hamiltonian for arelatively short
time, projects into the space spanned by the energies clos
the test energy, and various propagated wavepackets a
ferent energies within a window serve as a basis for conv
tional matrix diagonalization, yielding thereby the spectru
PRE 621063-651X/2000/62~3!/4351~14!/$15.00
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belonging to the chosen window.’’ This appealing propo
tion was apparently first implemented for practical calcu
tions by Heller and co-workers@1,2# within the semiclassica
framework. This method, through the innovation of Ne
hauser@3–6#, has come to be known as thefilter diagonal-
ization ~FD! method. The FD method originally utilized th
exact quantum evolution of the system and later it was a
recast in terms of the discrete time-dependent correla
function @6,19#. The FD method has been argued to be va
even when the dynamics underlying the correlation funct
is not quantum mechanical@6#. We note that various formu
lations of the original FD proposition@3#, aside from the
implementation strategy, fundamentally differentiate only
the choice ofdamping functions. Of the damping functions
the Gaussiantype has been frequently utilized, though
more elaborate choice of damping functions has also b
made @6,27#. The FD method utilizes thespectral density
operator~SDO! as the filter operator. The SDO has also be
utilized by Kouri, Hoffman, and co-workers@11–13# for
implementation of the continuous correlation-function-bas
spectral method.

In this paper, we will be concerned with the fundamen
properties of the SDO. The time-domain theory of spec
filters based on the above proposition has been contra
with the traditional correlation-function-based tim
dependent spectral method@35# and it has been qualitatively
argued that the time-domain spectral filter theory can byp
the time-energy uncertainty constraint, and hence it is su
rior in numerical performance@5,20#. We parenthetically
note that the time-energy uncertainty principle dictates
minimum time one has to propagate the wave packet in o
to recover the eigenspectrum of the system Hamilton
faithfully, and this is also frequently known as thesampling
theorem@36# in communication problems. Whether the F
method can bypass the uncertainty constraint is a fundam
4351 ©2000 The American Physical Society
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tal issue, and this will be examined here in analytical as w
as numerical terms.

In this paper, we develop the time-domain theory of sp
tral filters from themeasurementperspective@37–39# and
advance arguments that the FD method is a particular im
mentation of the general spectral filter goal. The measu
ment perspective gives rise to a unified understanding
various time-domain filter algorithms known in the literatu
and also clarifies the central issue of the role of the tim
energy uncertainty principle. For illustration, we have imp
mented a parameter~arbitrary! free realization of the filter
paradigm into the traditional continuous correlation functi
as well as the FD form, and compare their numerical per
mance in detail.

The organization of this paper is as follows. In Sec. II, w
elaborate on the concept of spectral filters from the meas
ment perspective in quantum mechanics, followed by vari
approximations to the general filter operator and its repres
tation in the orthogonal polynomial form. Implementation
the filter paradigm in the form of a correlation function
well as FD is presented in Sec. III. We discuss the details
the model system studied here in Sec. IV, and in Sec. V
present the computational results. We conclude the prese
tion in Sec. VI.

II. THEORY

In what follows, we discuss the basic physics underly
the spectral filter concept, and outline the protocol ba
both on the traditional time correlation function and the fil
diagonalization~FD! method. In order to facilitate an eve
and consistent comparison, we will adopt the Chebys
polynomials as the basic time propagation system@40# and
rely on our ability to carry out the time-energy Fourier tran
formation fully analytically, without recourse to any dam
ing function. The choice of Chebyshev polynomials is due
their extraordinary analytical properties, not shared by ot
classical orthogonal sets, and this eventually leads to a
compact and numerically efficient formulation of th
continuous-time FD method.

A. Selective measurements and spectral filters

The theory of spectral filters can be viewed as originat
from the basic propositions of the theory of measuremen
quantum mechanics@37–39#—an integral part of the Copen
hagen doctrine, as elaborated in the classic treatise of D
@37#. It will become clear later that the concept of ‘‘filter’
has a direct connotation with the act of measurement. In
following, we state the basic assumptions underlying
theory of measurement@37#.

~i! An act of measurement always causes the quan
system to jump into an eigenstate of the corresponding
dynamical variable~for example, the Hamiltonian of the sys
tem! that is being measured; that is, any result of a meas
ment of a real dynamical variable is one of its eigenvalu
Conversely, every eigenvalue is a possible result of meas
ment of the dynamical variable for some state of the qu
tum system.

~ii ! If a certain real dynamical variable is measured with
system in an arbitrary state, the states into which the sys
may jump on account of the measurement are such tha
ll
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original arbitrary state is dependent on them. Since the st
into which the system may jump are all eigenstates, an a
trary state is dependent on the eigenstates of the real dyn
cal variable.

These areconstructivepropositions and they provide a
gorithmic clues as to how the theory of spectral filters has
be built in quantum mechanics. We will also utilize the fa
that eigenstates of the system Hamiltonian form an ortho
nal set, but we will not assume the existence of the tim
dependent Schro¨dinger equation~TDSE!. We first point out
the meaning of the second assumption. It empowers u
analyze the initial arbitrary state in an orthogonal referen
space spanned by the eigenvectorsuf(x,em)& of the system
Hamiltonian. Without loss of generality, we assume the r
erence space to be of finite dimension. Thus we can write
arbitrary initial state~in the energy representation! as fol-
lows:

uc~x,0!&5(
m

A~em!uf~x,em!&, ~1!

whereAm5^f(x,em)uc(x,0)& is the weight with which the
mth eigenstate contributes to the initial wave packet. Th
the second assumption allows us to consider the initial a
trary state to be synthesized from the eigenstates of the
tem. In order to extract the spectral information fro
uc(x,0)&, we resort to the first measurement assumption.
clarify the meaning of measurement, we introduce the not
of selective measurementor filtration, in which we imagine a
process that, when applied touc(x,0)&, selects only one of
the eigenstates and rejects all others@38,39#. In other words,

~2!

Thus a measurement always changes the state, the onl
ception being when the state itself is one of the eigenstate
the real dynamical variable~the Hamiltonian, in the presen
context!, in which case the measurement does not change
state. Mathematically, such aselective measurementamounts
to applying a projection operator,L̂(em). The application of
a projection operator onuc(x,0)& selects the eigenstate, as
clear from the following implicit definition:

L̂~em!uc~x,0!&5$uf~x,em!&^f~x,em!u%uc~x,0!&

5uA~em!uf~x,em!&. ~3!

The measurement paradigm can also be applied to the c
lation function,

L̂~em!r~0!5^c~x,0!u$uf~x,em!&^f~x,em!u%uc~x,0!&

5uA~em!u2. ~4!

Thus the projection operator acting on the correlation fu
tion, which is unity at zero time, filters the correspondi
spectral intensity and this also provides a valid avenue
spectral analysis.

Having established the concept offilter through the notion
of selective measurement, we now need to formulate an ex
plicit and operational definition of the projection operato
We note that Eqs.~3! and~4! provide only anonconstructive
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assertion to this end. By ‘‘nonconstructive’’ we mean th
the proposition is devoid of any practical value, but its no
existence would lead to a logical contradiction. As we a
dealing with the energy eigenstates, it is obvious that a p

jection operator of the typed(E2Ĥ), whereĤ is the Hamil-
tonian of the system andE is the energy at which the filte
operator is being applied, clearly satisfies the primary not
of theselective measurementand hence this would be a natu
ral choice for the spectral analysis of the quantum system
this way, we see that the entire spectral filter problem ess
tially reduces to finding an appropriate representation of
delta operator,d(E2Ĥ).

We note that the above notion ofselective measuremen
has been popular in interpretative quantum mechanics an
fact Schwinger developed a formalism of quantum mech
ics and introduced a measurement symbolM (em) and the
correponding measurement algebra@38#. Schwinger’s mea-
surement symbol is identical to our elementary project

operator,L̂(em).

B. Derivation of filters

Having recognizedd(E2Ĥ) as the basic object underly
ing the spectral filter goal, we now focus upon its practi
representation. In the following discussion, we also adva
the reasoning leading tod(E2Ĥ) as the basis for variou
FD methods and we will contrast this with the correlati
function approach. We note that the delta operatord(E
2Ĥ) is identical to thespectral density operator~SDO!
known through the work of Kouri and co-workers@11–13#.
This operator refers to theselective measurementprocess
here and we know that no measurement is, in general, op
tionally perfect@imperfection here lies in the construction
the measuring apparatus,d(E2Ĥ), and has nothing to do
with the uncertainty principle# and henced(E2Ĥ) can, in
practical realization, at best represent a certain limiting p
cess. That means that the application ofd(E2Ĥ) ‘‘forces’’
the initial arbitrary state to jump into the vicinity of the en
ergy eigenstate,f(x,em), with ever-decreasing error, (E
2em), in the norm. There are several functions which,
specific limits, mimick the behavior of thed function, and
the typical examples are 1/2z exp(2uE2Ĥu/z), (1/p)z/@(E
2Ĥ)21z2#, 1/zAp exp@2(E2Ĥ)2/z2#, and 1/pz sinc(@E

2Ĥ#/z) @where sinc(x)5sin(x)/x#, in the limit z→0, and
any of these approximations could be utilized to derive eq
tions for the spectral filter. We notice that the parameterz in
all these approximations ofd(E2Ĥ) is merely the inverse o
the physical time, T ~this is implied from dimensional con
siderations!, as time and energy are conjugate variables
quantum mechanics, and therefore the ‘‘selective meas
ment’’ demands the measurement process to be of ‘‘infini
duration, which in the present context essentially mean
continuous ever-ending limiting sequence. That is, as lon
the measurement process is ‘‘on,’’ we can reach the eig
state as close as we wish. The conjugacy of time and en
also suggests that the Fourier integral theorem@41# could be
applied here in order to obtain an integral representation
the approximation of thed operator. We thus write
t
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d~E2Ĥ!5E
2`

`

dt ei ~E2Ĥ!t

3@Fourier transformation ofd~E2Ĥ!#.

~5!

Equation~5! is an identity of fundamental importance, a
this enables us to obtain various spectral filters of our cho
In Eq. ~5!, we have implicitly assumed that the argument
thed operator does not have any time dependence, and th
consistent with the fact that the eigenstate of the system
time-independent concept. Now, as a definite example, le
consider 1/zAp exp@2(E2Ĥ)2/z2# and 1/pz sinc(@E

2Ĥ#/z) as approximations tod(E2Ĥ), the Fourier pairs of
which are 1/2p for utu,T and A1/2p exp(2t2/4T2) for T
.0, respectively, and thus we obtain from Eq.~5!,

d approx~E2Ĥ!5
1

A2T
E

2T

T

dt eiEte2 i Ĥt

5
1

A2p
E

2`

`

dt eiEte2 i Ĥt

~ in the limit T→`!, ~6!

d G
approx~E2Ĥ!5

1

A2T
E

2T

T

dt eiEte2 i Ĥte2t2/4T2
. ~7!

Equation~6! states that filteration can be accomplished
the Fourier transformation of an arbitrary state, evolved

der e2 i Ĥt, which is consistent with the time-depende
Schrödinger equation. Noticeably, we have arrived at Eq.~6!
with just the logical extension of the two measurement
sumptions. Equation~7!, on the other hand, represents t
Fourier transformation with Gaussian damping. If we u
(1/p)z/@(E2Ĥ)21z2# as the approximation of thed opera-
tor, we would obtain the Fourier transformation with exp
nential damping,e2zutu. As such, Eq.~6! and its variants like
Eq. ~7! have been the starting point for various FD metho
@3,6,12,18,23#. We note that the application of Eq.~6! in the
FD context is known as a ‘‘box filter,’’ otherwise the filter i
known with the corresponding damping function. It is no
apparent that only the sinc function, contrary to other a
proximations, gives rise to the simplest integral represen
tion to thed operator, which does not involve any arbitra
damping function, and therefore this has to be the most n
ral choice as the physical theory cannot be dependen
some arbitrary parameter. In practice, however, the appl
tion of a suitable damping function may be advantageous
specific purposes. We will elaborate upon this point later
Now, as time is operationally taken as a continuous varia
the integrand in Eq.~6! is a continuous function of time, an
the range of this function goes, in principle, to infinit
Therefore, Eq.~6! is an instance of Fourier transformation
the function on the full line~2`,1`!, the consequence o
which is thatd approx(E2Ĥ) is also, in principle, continuous
That is, the individual Fourier components in Eq.~6!, Ek
5(2p/T)k, wherek is an integer, can be brought, in th
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limit T→`, as close as we wish. In this limit, a specifi

functional value,d approx(Ek2Ĥ), cannot be correlated any
more to a definite Fourier component, but it has to be c

sidered as aspectral density, and thusd approx(E2Ĥ) repre-
sents thespectral density operator@41#. The significance of
the Fourier integral theorem is that we can resolve an a
trary function in the time domain,f (t), into its harmonic
components, by constructing the continuous funct

d approx(E2Ĥ), which represents a spectral density. W
point out that the range of integration in Eqs.~6! and~7! ~i.e.,
from 2T to T, with limit T→`) assumes the validity o
time-reversal symmetry, which is fully justified for the e
genvalue problems in quantum mechanics. In fact, the im
sition of time-reversal symmetry in quantum mechanics
sentially amounts to a definite choice of thephase factor,
which can conveniently be taken as unity for eigenva
problems@42#.

We now discuss the role of damping functions contain
an arbitrary parameter, as manifested in Eq.~7!. We have
already recognized Eq.~6!, which is a Fourier series, as th
statement of the TDSE and therefore we need to unders
the situations in which the use of the damping function
needed for the convergence of the series. The following
gument is based on the studies of Lanczos@41#. Ordinarily, a
Fourier series means that we sum up an increasing numb
terms of the series by constantly adding one more term to
previous terms, and if the sum uniformally converges, th
the coefficients of the series cannot be anything but the u
Fourier coefficients as obtained by a definite integral. On
other hand, if the function domain includes some singu
point and the convergence is no longer uniform~an example
being the appearance of the so-called Gibb’s phenome
@41#!, the overall convergence of the series may be enhan
by adjusting the Fourier coefficients using certain suita
weight factors, which change as we go along the se
~damping function!. It should, however, be noted that if th
function is in fact exactly equal to the sum of a finite numb
of ~sayN! Fourier terms, then the ordinary way of summin
the series~that is, without using the damping function! will
recover the function exactly afterN terms, while the use o
the damping function willnever get the function exactly,
unlessN increases to infinity. Thus, every approximation
the d operator, which involves an arbitrary damping para
eter, is generally a legitimate analytical proposition, in t
sense that in convergence proofs we are only intereste
what eventually happens to the series and we do not
how many terms are needed for a certain accuracy. In p
tice, however, different approximations of thed operator,
owing to the presence of an arbitrary damping parame
will exhibit qualitatively different numerical behavior. Th
use of damping functions in the filter context should be s
in this light.

Now, a remark on the so-calledtime-energy uncertainty
principle @43# is in order. It is clear that the time integratio
in Eq. ~6! can, in practical applications, be carried out on
for a finite interval~say,2T/2 to 1T/2), and this sets a limit
on the energy resolution~maximum 2p/T) during spectral
analysis while using Eq.~6! or Eq. ~7!. This fact, obvious
from the Fourier integral theorem, is variously known as
time-energy uncertainty principleor the sampling theorem
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@36#. It must be emphasized that the use of a damping fu
tion @as in Eq.~7!, for example# does not, in any way, let us
bypass this uncertainty constraint. This point will be furth
considered in the development of the FD method.

We will now discuss the issues related to the implem
tation of Eq.~6!. In principle, one could use any short-tim
propagator to generate the integrand in Eq.~6! at discrete
times and carry out the integration numerically. Howev
the numerical integration is frought with difficulties as on
has to take cognizance of thesampling theorem@36#. That is,
the sampling intervalDt has to be less than at least 2p/E,
whereE5Emax2Emin is the total spectral range contained
the Hamiltonian. As Eq.~6! involves an integration ove
time, it would be very convenient to utilize a propagatio

method that splits the evolution operatore2 i Ĥt into a Hamil-
tonian part and a time part, so that one can attempt to c
out the time integral in Eq.~6! or its variants like Eq.~7!
fully analytically. In this context, a classical orthogon
polynomial-based recursive propagation method is an id
choice. The choice of the orthogonal polynomial and t
approximation of thed operator would be largely dictated b
our ability to carry out the time integral fully analytically
otherwise the ensuing numerical scheme would turn out to
numerically less efficient and transparent@34#. In the follow-
ing, we consider the Chebyshev polynomial-based repre
tation of the evolution operator@40#, in conjunction with Eq.
~6!. Thus we can write

e2 i Ĥt5 (
m50

N→`

~22dm0!~2 i !me2 i l̄tJm~ tDl!TmS Ĥ2l̄

Dl
D ,

~8!

where l̄ and Dl are the scaling parameters to adjust t
range of the Hamiltonian,Ĥ, to fall in the interval21 to 11,
as demanded by the definition of the Chebyshev polynom
Now we substitute Eq.~8! into Eq.~6! and carry out the time
integral from 0 toT ~with T→`) to obtain the following
expression for the approximated operator:

d approx~E2Ĥ!5
2

Dl
~12Ē!21/2(

m50

N

~22dm0!

3@Tm~Ē!2 iVm~Ē!#Tm~H̄ !, ~9!

which, on the application of time-reversal symmetry, yiel

d approx~E2Ĥ!5
2

Dl
~12Ē!21/2

3 (
m50

N

~22dm0!Tm~Ē!Tm~H̄ !. ~10!

Here Ē and H̄ are the normalized energy and Hamiltonia
respectively.Tm(Ē) andVm(Ē) refer to the two linearly in-
dependent solutions of the second-order differential eq
tion, which Chebyshev polynomials of type I satisfy, and
which only Tm is a polynomial. We note that Eq.~7! cannot
be integrated fully analytically with Eq.~8! and hence it
would not be possible to get a closed-form expression for
Gaussian approximation ford(E2Ĥ) as in Eqs.~9! and
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~10!. It is clear from Eq.~9! that the polynomial feature is
lost in the absence of the time-reversal symmetry.

III. IMPLEMENTATION

In this section, we discuss the continuous-time implem
tation of spectral filters for correlation functions as well
FD, and for this purpose we will utilize the sinc functio
approximation to the projection operator@cf., Eq. ~6!#. The
continuous-time formulation is generally sufficient f
bound-state problems. However, it turns out that if we
strict the time integral only from 0 toT ~with T→`), the
discrete time implementation of the FD method may be u
ful @19# and therefore we will also address this issue.

A. Correlation function

Using Eqs.~4! and ~10!, we obtain

r~E!5
4

Dl
~12Ē!21/2(

m50

N S 12
dm0

2 DTm~Ē!Um , ~11!

where Um5^c(x,0)uTm(H̄)uc(x,0)&. Here r(E) is a con-
tinuous function of energy and this function, in the limitN
→`, has a ‘‘d -comb’’ structure with different peaks locate
at E5em ~whereem is the mth eigenvalue! and r(E) itself
equals the spectral intensity,uA(em)u2. We note thatr(E),
for finite N, will have the sinc function type structure. W
thus see that in the continuous correlation function meth
we directly filter the spectral intensity, and the energy lo
tion of the eigenstate is essentially a side product. In pra
cal calculations, one has to evaluateUm only once and store
it. We can then, within a given energy window, sweep t
function r(E) to locate the energy position of the eige
states. The energy intervalDE at which one calculatesr(E)
should be such that one does not miss any eigenstate, w
meansDE should be smaller than the expected smallest
genvalue gap in the given energy window. The question n
is, how many terms,N in Eq. ~11!, should we retain so tha
we can faithfully identify all the eigenstates in a given e
ergy window? The numberN essentially reflects the tota
lengthT of the time propagation in Eq.~6!, and this has to be
larger thanTDl, as is evident from Eq.~8!. And the total
length of the time propgation itself has to satisfy the tim
energy uncertainty principle; that is,T has to be greater tha
2p/De, whereDe is the minimum eigenvalue gap within th
given energy window. In practical realization, however, w
can adopt a more pragmatic approach. We know that
functionr(E) will have maxima at the eigenvalue location
along with the adjoining sinc structures which have contin
ously diminishing amplitudes asN grows to infinity. We can
then compute the first and second derivatives ofr(E) with
respect to energy and superimpose this overr(E). The ei-
genvalue locations are identified as the points where the
derivative passes through zero. In actual calculations,
may use other methods, such as the Newton-Raph
method@44#, to locate the roots of]r(E)/]E. The required
derivative expressions are as given below,
-
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]r~E!

]E
5

4

~Dl!2 ~12Ē!23/2(
m50

N S 12
dm0

2 D
3@mTm21~Ē!2~m21!ĒTm~Ē!#Um , ~12!

]2r~E!

]E2 5
4

~Dl!3 ~12Ē!25/2(
m50

N S 12
dm0

2 D @3mĒTm21~Ē!

1~m21!$~m22!Ē22~m11!%Tm~Ē!#Um .

~13!

We note that Eqs.~12! and ~13! have been obtained by dif
ferentiating a sort of ‘‘discontinuous’’ functionr(E) ~in the
limit N→`), and hence their values will grow to ‘‘infinity’’
asN becomes large. However, for the purpose of location
zeros, we can always scale Eqs.~12! and ~13! arbitrarily
down, as we are not concerned with their actual large valu
We also point out that Eq.~11! is not properly normalized
and it should be normalized with the factor 1/A2T for the
determination of spectral intensity,uA(em)u2, where the total
propagation timeT can be estimated by the fact thatN is
greater thanTDl, where N is the total number of terms
required in Eq.~10! to obtain the well-resolved spectral fea
tures of the Hamiltonian.

B. Filter diagonalization

The FD method is a practical realization of theselective
measurementparadigm, and Eq.~6! or its variants like Eq.
~7! in conjunction with Eq.~3! serves as the starting poin
Using Eqs.~3! and ~6!, we write

ux~x,E!&5L̂~E!uc~x,0!&

5H lim
T→`

E
2T

T

dt eiEte2 i ĤtJ uc~x,0!&

5 lim
T→`

E
2T

T

dt eiEtuc~x,t !&. ~14!

Equation~14! is not properly normalized and we will discus
this issue later. In Eq.~14!, we recognizeuc(x,t)& as the
time-evolved state and the time evolution itself is affected

the operatore2 i Ĥt. Also, E as well asĤ is independent of
time, in order to be consistent with Eq.~5!. In this way, we
recover the time-dependent Schro¨dinger equation, just with
the logical extension of the measurement propositions. N
Eq. ~14! essentially states that the energy stateux(x,E)& can
be extracted from the time evolution of an arbitrary state
utilizing the Fourier integral theorem. The crux of the F
method lies in an important observation that the integrand
Eq. ~14! is highly oscillatory, and therefore reflects the po
sibility of strong cancellation for a moderately large value
t. As time goes on, we expect smaller contributions from
energy components away fromE. This phenomenon is some
times known as theloss of phase coherence, the result of
which leads to the FD proposition@1–3# ‘‘after a relatively
short time the filtered stateux(x,E)& will span the space of



ve
lu
-
D

l
pr
n
a
m
n
rg

a
n-
d

pl

b
to
ur
gn
a
.

n

rin

as

e
rk

h
-
q.
or

lin
io

bi-

low
on,
this

a-

he
e
f
rier
he
i-
nten-
n-
be

r the
y
by

rob-
is

on
e-

ill
a

ms
ot
ble

es-
no
.
he
m-
is
in

am-
s
in
e a
ny

tral
er
we
end
by

,
are

en
gies

4356 PRE 62AMRENDRA VIJAY AND ROBERT E. WYATT
quantum states with energies close toE, and several such
filtered states at a discrete set of energies within a gi
window can be used as a basis set to obtain the eigenva
within the window, by conventional matrix diagonaliza
tion.’’ In this sense, the time propagation step in the F
method acts as apreconditionerof the basis for eventua
disentanglement of eigenstates by the diagonalization
cess. The filtered statesux(x,E)& are not expected to form a
orthogonal set and, in practical applications, one has to m
sure that the set is overcomplete, that is, the size of the
trix ~L! we diagonalize is larger than the number of eige
values within the given window. Thus we express the ene
eigenstateuf(x,em)& in terms of filtered states,

uf~x,em!&5(
l 51

L

Blmux~x,El !&, ~15!

and obtain the eigenvalue problem in the matrix form
HB5SBe. Heree is a diagonal matrix containing the eige
values, and the Hamiltonian and overlap matrices are
fined, respectively, as follows:

Sm,m85^x~x,Em!ux~x,Em8!&x , ~16!

Hm,m85^x~x,Em!uĤux~x,Em8!&x . ~17!

In this overcomplete eigensystem, the overlap matrixS is
generally singular and therefore we can use, for exam
singular value decomposition~SVD! @45# for this purpose.

Eigenvalues obtained by the FD method may not all
true eigenvalues of the system, and therefore it is manda
to carry out an independent check to differentiate the sp
ous eigenvalues from the true ones. To this end, the ma
tude of the vector, (Ĥ2em)uf(x,em)&, can be used as
parameter to serve the accuracy of the computed results
be specific, we can compute the error normDem defined as
follows @6#:

~Dem!25 z^f~x,em!u~Ĥ2em!2uf~x,em!& z

5u~BtH2B!mm2em
2 ~BtSB!mmu. ~18!

Here, theH2 matrix is defined as follows:

Hmm8
2

5^x~x,em!uĤ2ux~x,em8!&. ~19!

It has been shown that (Dem)2 represents the upper bound o
the true error of the eigenvalues@46#. For the purpose of
error estimation, one may also use different variational p
ciples, as suggested by Beck and Meyer@27#.

The above discussion essentially completes the b
ideas involved in the FD method. Here, Eqs.~14!–~19! form
the basic structure of the FD method, and the obvious qu
tion that remains is as how efficiently can we cast the wo
ing equations for the matrix elements@Eqs.~16! and~17!#. It
is this stage that different strategies have been put fort
the literature@6,18,19,25,27,34#. In the present study, we uti
lize Eq. ~10! for the projection operator as required in E
~14!. A derivation of the overlap, Hamiltonian, and err
matrix elements is presented in Appendix A.

Thus we see that the FD proposition offers an appea
viewpoint, and in this context the most important quest
n
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now is how much time one has to propagate an initial ar
trary state in Eq.~14! for a faithful identification of all the
eigenvalues in the window, and does the method really al
one to bypass the uncertainty principle. The FD propositi
as outlined above, does not make any such assertion to
end, and therefore we will reconsider Eq.~14!. In fact, we
arrived at Eq.~14! through the logical extension of the me
surement notion, and therefore, in the limitT→`, this only
asserts ‘‘either we filter the eigenstates or we do not.’’ T
limiting process in Eq.~14! is expected to be bounded by th
time-energy uncertainty principle for a faithful filteration o
eigenstates, and this is merely the assertion of the Fou
integral theorem. It is clear that if we do not exhaust t
limiting process in Eq.~14!, we once again filter some arb
trary states and these states may have nonzero spectral i
sities only for the limited eigenstates close to the filter e
ergy. However, no sweeping analytical assertion can
made as to whether states thus obtained are sufficient fo
faithful identification of all the eigenvalues in the window b
the diagonalization process. This issue is better settled
systematic numerical experiments.

So far the discussion was restricted to bound-state p
lems for which the imposition of time-reversal symmetry
legitimate, and we utilized the continuous-time formulati
within the framework of Chebyshev polynomials. If we r
strict the time integration only from 0 toT ~with T→`), the
d operator will contain a nonpolynomial term,Vm @cf., Eq.
~9!#, and the resulting overlap and Hamiltonian matrices w
clearly be complex symmetric with complex eigenvalues—
situation typically encountered for the resonance proble
by the complex scaling method. In this situation, it will n
be possible to carry out partial summation of the dou
series by the method of aCauchy-like expansion@47# as we
have done in Appendix A, and therefore the resulting expr
sions for the overlap and the Hamiltonian matrices will
longer be in ‘‘numerically friendly’’ form. As shown in Ref
@19#, it turns out that the discrete time implementation of t
FD method in this case may be preferred as it allows a co
pact set of final equations for numerical purposes. This
described in Appendix B. In any case, we have to bear
mind that the discrete time sampling has to satisfy the s
pling theorem@36#; that is, the time interval has to be les
than 2p/De, whereDe is the total spectral range contained
the Hamiltonian. In this situation, we are not bound to us
polynomial expansion of the time evolution operator and a
short-time propagator can serve the purpose.

IV. MODEL

In order to make a thorough test and compare spec
filter methods based on the correlation function with filt
diagonalization, we need to have a flexible model so that
can study various regions of the parameter space. To this
we have selected the model Hamiltonian as introduced
Wyatt @30#. The model system consists ofnb bands of states
with ns states in each band. The states within each band
relatively strongly coupled, with weaker coupling betwe
states in different bands. The zeroth-order diagonal ener
were chosen to lie in the interval@0,1#, so that the average
spacing between successive states is 1/(nbns). The Hamil-
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FIG. 1. The eigenvalue distri-
bution of the model Hamiltonian.
Shaded regions show the spectr
windows studied here.
go

ou
e

s
in

od.
to

r of

ina-
e-
ries
he
test
ari-
um
me
ow
e

tonian matrix elements are specified as follows: for dia
nal energies,

Hi j ,i j 5~ i 21!D1~ j 21!d, where d!D;

for intraband coupling,

Hi j ,i j 85C exp~2u j 2 j 8u!;

and for interband coupling,

Hi j ,i 8 j 85@C/~nodu i 2 i 8u11!#exp~2u j 2 j 8u!,

where i denotes the band index,i 51,2, . . . ,nb , and j de-
notes the index for states in this band,j 51,2, . . . ,ns . As is
implicit, the model consists of six parameters, in whichns
determines the density of states and the parameternod ad-
justs the interband coupling relative to the intraband c
pling. In the present study, we choose the following valu
for the parameters: nb510, ns5200, C50.05, D50.1, d
-

-
s

50.0001, andnod55. The eigenvalue distribution for thi
model as obtained by exact diagonalization is shown
Fig. 1.

V. RESULTS AND DISCUSSION

We first analyze the results obtained by the FD meth
The FD method utilizes two free parameters which have
be adjusted in the numerical experiment, viz., the numbe
Chebyshev terms,N @2N in Eq. ~A8!#, and the number of
basis functions,L @Eq. ~15!#, in the given window. The num-
ber of Chebyshev terms required for an accurate determ
tion of the eigenspectrum in a given window is directly r
lated to the total propagation time, as we know that the se
in Eq. ~8! has exponential convergence if the order of t
Bessel function is greater than its argument. In order to
the performance of the FD method, we have examined v
ous spectral windows from different regions of the spectr
as indicated in Fig. 1, and in what follows we present so
representative results. We first concentrate on the wind
~1095–1102!, for which we compare the FD results with th
TABLE I. A comparison of exact and FD eigenvalues for the model Hamiltonian.

No. Exact ~8100/28!a ~8100/30!a ~8200/28!a

1095 0.500 161 66 0.500 161 66 ~0.052 01! 0.500 161 66 ~0.189 94! 0.500 161 68 ~0.146 17!
0.500 330 80 ~27.330 79!

1096 0.500 409 13 0.500 409 13 ~0.050 99! 0.500 409 15 ~0.340 96! 0.500 409 14 ~0.090 10!
1097 0.500 663 68 0.500 663 68 ~0.010 37! 0.500 663 68 ~0.016 83! 0.500 663 68 ~0.013 90!
1098 0.500 925 29 0.500 925 29 ~0.074 05! 0.500 925 29 ~0.081 52! 0.500 925 30 ~0.081 38!
1099 0.501 193 97 0.501 193 97 ~0.004 84! 0.501 193 97 ~0.004 82! 0.501 193 97 ~0.004 79!
1100 0.501 469 75 0.501 469 75 ~0.002 10! 0.501 469 75 ~0.002 07! 0.501 469 75 ~0.011 93!

0.501 497 05 ~24.445 96!
1101 0.501 752 67 0.501 752 67 ~0.003 57! 0.501 752 67 ~0.003 69! 0.501 752 67 ~0.003 65!
1102 0.502 042 77 0.502 042 77 ~0.026 20! 0.502 042 77 ~0.035 54! 0.502 042 77 ~0.043 67!

a(N/L) refers to the number of Chebyshev terms and the number of filtered states. The error,Dem3103 @Eq. ~18!# is given in the
parentheses.
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TABLE II. A comparison of exact and FD eigenvalues as a function of relative phase for the model Hamiltonian.

No. Exact

FD ~relative phase!a

1.10 1.00 0.90 0.80 0.75 0.70 0.60

1095 0.500 161 66 0.500 161 44 0.500 147 33 0.500 169 79 0.500 209 65 0.500 241 78
1096 0.500 409 13 0.500 408 53 0.500 356 13 0.500 433 93 0.500 368 38 0.500 313 25
1097 0.500 663 68 0.500 663 62 0.500 644 84 0.500 666 02 0.500 656 66 0.500 659 19 0.500 672 93 0.50
1098 0.500 925 29 0.500 921 17 0.500 699 10
1099 0.501 193 97 0.501 193 95 0.501 193 32 0.501 192 44 0.501 176 03 0.501 192 58 0.501 224 08 0.50
1100 0.501 469 75 0.501 469 75 0.501 469 63 0.501 469 33 0.501 457 38 0.501 471 87 0.501 488 79 0.50
1101 0.501 752 67 0.501 752 66 0.501 752 50 0.501 751 96 0.501 707 93 0.501 761 35 0.501 782 62 0.50

0.502 025 36
1102 0.502 042 77 0.502 043 06 0.502 041 41 0.502 037 81 0.501 876 98

aThe relative phase is with reference to the minimum eigenvalue gap in the window.
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exact ones in Table I. This window has a total of eight
genvalues, and with several trials we found 28 filtered sta
(L528) to be sufficient for an accurate determination of
spectrum. With 28 filtered states, we then systematically
amined the convergence of the window eigenvalues a
function of the number of Chebyshev terms~N! in Eq. ~A8!,
and found that 14 400 terms (2N) are generally sufficient to
identify the spectrum~with the correct number of eigenva
ues and the error estimate being smaller than the eigenv
gap!, while 16 200 terms were necessary to obtain eight-d
accuracy with respect to eigenvalues obtained by direct
agonalization. This result gives us some insight into the c
vergence of the FD method, as we expect the convergenc
be dictated by the local eigenvalue gap in the given windo
Within this spectral window, the averageDeavg ~largest/
smallest, De lar /Desma) eigenvalue gap is 0.000 268 7
~0.000 290 1/0.000 247 47!, and for the present model sys
tem, the l̄ and Dl parameters are 0.472 363 615 a
0.493 222 455, respectively. Thus the 16 200 Chebyshev
cursions would have been sufficient to propagate the w
packet at a time of aboutTtot532 845 units, and this corre
sponds to the relative phase which the levels receive wi
this time@(Ttot/2p)* Deavg/lar/sma# to be about 1.41/1.52/1.29
which is larger than one oscillation. The time-energy unc
tainty principle predicts the relative phase to be larger th
1.0 for an accurate identification of eigenvalues. In Table
we compare the FD predicted eigenvalues as a functio
the relative phase~which has been computed with referen
to the smallest eigenvalue gap in the window!. The number
of filtered states~L! was taken to be 50. It is clear from Tab
II that one has to go beyond the time-energy uncerta
regime~relative phase higher than 1.0! for a reliable predic-
tion of eigenvalues. Thus we see that the FD method rem
within the bound of the uncertainty constraint, which is co
trary to earlier claims@3,20#. From Tables I and II, we also
note the appearance of spurious eigenvalues when we
crease the number of Chebyshev recursions, which is re
niscent of the well-known Lanczos method. However, spu
ous eigenvalues also appear when we change the numb
filtered states~L! utilized in the reduced eigenvalue problem
With the FD method, these spurious eigenvalues appear t
easily identified if we set somewhat stringent criteria in t
computed error norm, as is clear from Table I. We have a
found that the number of filtered states~L! and the number of
-
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Chebyshev terms~N! are, in general, coupled parameters f
lower values ofL, and beyond certainL the FD method is
generally dependent only onN.

We next examine a somewhat larger spectral window
the eigenvalue range from 0.796 to 0.803~1673–1705!. This
window has a total of 33 eigenstates, and 50 filtered sta
~L! were found to be sufficient for an accurate determ
ation of eigenvalues. Within this window, the avera
Deavg ~largest/smallest,De lar /Desma) eigenvalue gap is
0.000 216 17~0.000 312 82/0.000 168 09!, and 6500 Cheby-
shev terms (2N513 000) were found to be sufficient fo
convergence of the eigenvalues. In Table III, we compare
FD result for this window with the exact ones~the results
with 7000 terms are shown to highlight the appearance
spurious eigenvalues!. We immediately see that the tota
relative phase which the levels receive here is about 0
0.71, and 1.31 when compared to the average, smallest,
the largest level spacing, respectively, in the window. Th
the performance of the FD method in this case seems
hover around the time-energy uncertainty regime and i
apparently difficult to claim whether or not we have rea
been able to bypass the uncertainty constraint in any sig
cant way.

We finally examine the window in the eigenvalue ran
from 0.644 to 0.682~1374–1407! in Table IV. The feature of
this window is qualitatively different from the previous win
dows; that is, the level spacing differs significantly in diffe
ent regions of the spectrum~the average, smallest, and th
largest level gap being 0.001 139 31, 0.000 349 66,
0.014 697 45, respectively!. The number of filtered states re
quired for a faithful reproduction of the eigenvalues isL
5100 as compared to 50 in the previous window~1673–
1705!, in spite of the fact that the number of states in bo
the windows is almost the same. With 7000 Chebysh
terms required in this case, the relative phase which the
els receive is found to be about 2.57, 0.79, and 33.20, res
tively, when compared to the average, smallest, and the l
est level spacing in the window. Thus the examples sho
here clearly indicate that the behavior of the FD method
solely guided by the local eigenvalue gap structure in
given window, and with reference to the smallest level g
the method may sometimes seem to bypass the uncert
constraint. Hence we conclude that the time-energy un
tainty is lurking here in a somewhat indirect manner, and
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general claim of the FD method going beyond the unc
tainty regime may be rather fortuitous.

We now turn to the correlation function realization of th
spectral filter method, and our objective is to evaluate
number of propagation steps needed for a reliable identifi
tion of the spectrum. We recall that the accurate reproduc
of eigenvalues here would involve the location of zeros
the first derivative of the correlation function, along wi
knowledge of the second derivative, and for this we can e
ploy any appropriate method, for example the Newto
Raphson method. Features of the correlation function it
will give sufficient insight into the problem. As an exampl
we have selected the window with eigenvalues ranging fr
0.796 to 0.803 for comparison with the FD method. For t
window, the FD method required about 13 000 Chebys
terms for the determination of eigenvalues. We have e
ployed the same number of Chebyshev terms in Eq.~11! and

TABLE III. A comparison of exact and FD eigenvalues for th
model Hamiltonian.

No. Exact ~700/50!a

1673 0.796 075 29 0.796 075 20 ~0.315 51!
1674 0.796 248 08 0.796 247 94 ~0.422 59!
1675 0.796 420 28 0.796 420 26 ~0.153 23!
1676 0.796 591 88 0.796 591 88 ~0.048 72!
1677 0.796 762 90 0.796 762 90 ~0.019 08!
1678 0.796 933 36 0.796 933 36 ~0.020 86!
1679 0.797 103 26 0.797 103 25 ~0.046 99!
1680 0.797 272 60 0.797 272 60 ~0.015 04!
1681 0.797 441 42 0.797 441 42 ~0.007 36!
1682 0.797 609 77 0.797 609 77 ~0.009 54!
1683 0.797 777 86 0.797 777 86 ~0.008 77!
1684 0.797 946 31 0.797 946 31 ~0.010 13!
1685 0.798 116 53 0.798 116 53 ~0.016 55!
1686 0.798 290 68 0.798 290 68 ~0.004 45!
1687 0.798 470 94 0.798 470 94 ~0.003 19!
1688 0.798 658 69 0.798 658 69 ~0.001 33!
1689 0.798 854 44 0.798 854 44 ~0.002 37!
1690 0.799 058 20 0.799 058 20 ~0.127 83!

0.799 094 78 ~34.964 31!
1691 0.799 269 77 0.799 269 77 ~0.001 95!
1692 0.799 488 93 0.799 488 93 ~0.000 30!
1693 0.799 715 49 0.799 715 49 ~0.000 33!
1694 0.799 949 33 0.799 949 33 ~0.001 14!
1695 0.800 190 34 0.800 190 34 ~0.000 65!
1696 0.800 438 47 0.800 438 47 ~0.000 87!
1697 0.800 693 68 0.800 693 68 ~0.000 09!
1698 0.800 955 98 0.800 955 98 ~0.000 42!
1699 0.801 225 36 0.801 225 36 ~0.000 65!
1700 0.801 501 86 0.801 501 86 ~0.000 45!
1701 0.801 785 50 0.801 785 50 ~0.000 81!
1702 0.802 076 35 0.802 076 35 ~0.000 33!
1703 0.802 374 46 0.802 374 46 ~0.000 78!
1704 0.802 679 89 0.802 679 89 ~0.000 16!
1705 0.802 992 71 0.802 992 71 ~0.002 11!

a(N/L) refers to the number of Chebyshev terms and the numbe
filtered states. The errorDem3103 @Eq. ~18!# is given in the paren-
theses.
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scanned the correlation amplitude as a function of ene
which is plotted in Fig. 2. Also shown in Fig. 2 are plots
the first and the second derivatives of the correlation am
tude@Eqs.~12! and~13!#, which have been scaled arbitrarily
This window has 33 eigenvalues and we can immediately
that the correlation function does have 33 peaks. In fact,
first and the second derivatives of the correlation amplitu
in Fig. 2 show 35 peaks, of which two peaks have vani
ingly small intensities and hence they are spurious. The
pearance of spurious eigenvalues is thus seen as a com
feature for both FD and correlation function methods. In t
limit of infinite time propagation, we would expect 33d
peaks and the peak height would correspond to the sig
intensity. Thus we see that the total time propagation
quired for the identification of the spectrum by the corre
tion function method is similar to the one in the FD metho
The essential difference now is in the exact location of
eigenvalue, for which the correlation function method has
rely on our ability to exactly locate the zeros of the fir
derivative ~in principle, there is no fundamental problem!,
whereas the FD method implements matrix diagonalizat
for this purpose.

We finally make some remarks on the computation of
spectral intensity,Am5^f(x,em)uc(x,0)& @Eq. ~1!#. This
computation requires that Eq.~11! be properly normalized.
As in the practical calculation, we employ only a finite num
ber of Chebyshev terms and this essentially amounts
finite-time propagation. Then we can utilize 1/A2T normal-
ization in Eq.~6! and estimateT from the argument of the
Bessel function in Eq.~8!. Computation of spectral intensi
ties by the FD method is also straightforward and it has b
discussed in detail in the literature@19,27,34#.

VI. CONCLUSION

We have demonstrated in this study that the time-dom
theory of spectral filters may be viewed as originating fro
the notion ofselective measurementin quantum mechanics
and different filter algorithms differ essentially in the way w
approximate the measurement operator, which is
d-function operator. We have further shown that alegitimate
integral representation of the measurement operator is
sible with the help of the Fourier integral theorem, and t
unifying theme has helped us to clarify the role of the tim
energy uncertainty principle to the numerical performance
the filter operator, which has been implemented here in
continuous correlation function as well as in the FD for
The continuous correlation function and the FD metho
both utilize equivalent propagation times and they differ on
in the algorithm used to locate the eigenvalues. From pra
cal considerations, the diagonalization step in the FD met
appears to be more convenient than the location of zero
the correlation function method. Thus we do not verify t
commonly held notion that the FD method can bypass
time-energy uncertainty constraint. Numerical experime
have shown the FD method to share some features with
well-known Lanczos reduction technique.
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TABLE IV. A comparison of exact and FD eigenvalues for the model Hamiltonian.

No. Exact ~3500/100!a ~3500/50!a

1374 0.644 211 66 0.644 211 66 ~0.015 74! 0.644 199 66 ~0.873 86!
1375 0.644 892 39 0.644 892 39 ~0.000 82! 0.644 877 28 ~2.021 75!
1376 0.645 551 00 0.645 551 00 ~0.000 14! 0.645 857 67 ~8.010 61!
1377 0.646 184 81 0.646 184 81 ~0.000 02!
1378 0.646 793 16 0.646 793 16 ~0.000 03! 0.646 716 34 ~5.687 86!
1379 0.647 380 35 0.647 380 35 ~0.000 07! 0.647 152 32 ~9.983 40!

0.647 712 86 ~10.135 01!
1380 0.647 956 80 0.647 956 80 ~0.000 08! 0.648 061 53 ~6.111 86!
1381 0.648 534 36 0.648 534 36 ~0.000 07!
1382 0.649 120 70 0.649 120 70 ~0.000 09! 0.649 119 64 ~0.432 36!
1383 0.649 719 16 0.649 719 16 ~0.000 12! 0.649 715 88 ~1.035 55!
1384 0.650 331 27 0.650 331 27 ~0.000 09! 0.650 328 80 ~1.051 41!
1385 0.650 958 16 0.650 958 16 ~0.000 09! 0.650 954 92 ~1.361 04!
1386 0.651 601 07 0.651 601 07 ~0.000 10! 0.651 582 10 ~2.279 36!
1387 0.652 261 38 0.652 261 38 ~0.000 12! 0.652 260 22 ~0.957 25!
1388 0.652 940 73 0.652 940 73 ~0.000 08! 0.652 940 42 ~0.551 02!
1389 0.653 641 06 0.653 641 06 ~0.000 05! 0.653 640 97 ~0.325 83!
1390 0.654 364 70 0.654 364 70 ~0.000 07! 0.654 364 65 ~0.273 75!
1391 0.655 114 47 0.655 114 47 ~0.000 09! 0.655 114 44 ~0.211 77!

0.655 591 57 ~72.278 46!
1392 0.655 893 88 0.655 893 88 ~0.000 05! 0.655 893 88 ~0.060 85!
1393 0.656 707 42 0.656 707 42 ~0.000 11! 0.656 707 42 ~0.053 00!
1394 0.657 560 92 0.657 560 92 ~0.000 05! 0.657 560 92 ~0.023 27!
1395 0.658 462 27 0.658 462 27 ~0.000 01! 0.658 462 27 ~0.058 01!
1396 0.659 422 69 0.659 422 69 ~0.000 07! 0.659 422 69 ~0.001 53!
1397 0.660 459 12 0.660 459 12 ~0.000 03! 0.660 459 12 ~0.000 56!
1398 0.661 599 69 0.661 599 69 ~0.000 08! 0.661 599 69 ~0.000 32!
1399 0.662 898 73 0.662 898 73 ~0.000 07! 0.662 898 73 ~0.000 21!
1400 0.664 497 63 0.664 497 63 ~0.000 05! 0.664 497 63 ~0.000 27!
1401 0.679 195 08 0.679 195 08 ~0.000 47! 0.679 195 09 ~0.025 54!
1402 0.679 782 14 0.679 782 14 ~0.002 27! 0.679 815 27 ~2.683 79!
1403 0.680 265 78 0.680 265 78 ~0.000 66! 0.680 266 06 ~0.218 27!
1404 0.680 695 43 0.680 701 61 ~0.753 84!
1405 0.681 090 00 0.681 090 03 ~0.051 87!
1406 0.681 459 19 0.681 459 21 ~0.041 00! 0.681 384 89 ~2.854 27!
1407 0.681 808 85 0.681 808 88 ~0.126 93! 0.681 740 35 ~4.280 40!

a(N/L) refers to the number of Chebyshev terms and the number of filtered states. The errorDem3103 @Eq.
~18!# is given in the parentheses.
an

nt,
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APPENDIX A: MATRIX ELEMENTS
FOR CONTINUOUS-TIME FD

Here we present a derivation of the overlap, Hamiltoni
and error matrix elements@Eqs. ~16!, ~17!, and ~19!# with
respect to the filtered states, Eq.~14!. SinceĤ5DlH̄1l̄,
the required matrix elements can be written as follows:

Smn5^x~x,Em!ux~x,En!&, ~A1!

Hmn5Dl^x~x,Em!uH̄ux~x,En!&1l̄Smn , ~A2!

Hmn
2 5~Dl!2^x~x,Em!u~H̄ !2ux~x,En!&12l̄Hmn2~ l̄ !2Smn .

~A3!
,

In the following, we evaluate the general matrix eleme
Rmn

p 5^x(x,Em)u(H̄)pux(x,En)&, from which we can recover
the individual matrix elements,Smn , Hmn , andHmn

2 by spe-
cializing with p50, 1, and 2, respectively. Taking Eq.~10!
as the representation of the projection operator required
Eq. ~14!, we have the following expression for the filtere
states:

ux~x,Em!&5
4

Dl (
k50

N→` S 12
dk0

2 D coskum

sinum
Tk~H̄ !uc~x,0!&,

~A4!

where cosum5Ēm. Thus the matrix elementRmn
p can be writ-

ten as follows:
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Rmn
p 5^x~x,Em!u~H̄ !pux~x,En!&

5
16

~Dl!2 (
k50

N→`

(
k850

N→` S 12
dk0

2 D
3S 12

dk80

2 D coskum cosk8un

sinum sinun

3^c~x,0!uTk~H̄ !Tk8~H̄ !@T1~H̄ !#puc~x,0!&.

~A5!

By utilizing the property of Chebyshev polynomial
2Tk(H̄)Tk8(H̄)5Tk1k8(H̄)1Tk2k8(H̄), it is straightforward
to show that

Tk~H̄ !Tk8~H̄ !@T1~H̄ !#p5 1
2 @Uk1k8

p
~H̄ !1Uk2k8

p
~H̄ !#

~A6!

with 2Uk
p(H̄)5@Tk1p(H̄)1Tk2p(H̄)#. Thus Eq.~A5! can

be written as

Rmn
p 5

4

~Dl!2 (
k50

N→`

(
k850

N→` S 12
dk0

2 D S 12
dk80

2 D
3

2 coskum cosk8un

sinum sinun
~ck1k8

p
1ck2k8

p
! ~A7!

FIG. 2. The correlation amplitude~top panel! and its first~cen-
tral panel! and second derivative~bottom panel! as a function of
energy. The intensity is plotted in arbitrary units.
with ck
p5^x(x,Em)uUk

p(H̄)ux(x,En)&. The double summa-
tion in Eq. ~A7! can be further simplified as shown by Man
delshtam and Taylor@19#. Before we proceed, we first not
that the right-hand side of Eq.~A7! is not a finite sum, but a
short-hand way of writing a complicated double limit. Sin
the addition is a step-by-step process, the quantities to
added must first be arranged in a sequence and there
unique rule for selecting the order in which they are to
taken. It is well known that the limit of the sum of terms o
a conditionally convergent series may depend upon the o
in which the terms are taken but that the terms of an ab
lutely convergent series can be arranged arbitrarily. Assu
ing the absolute convergence of series~A4!, we can employ
a Cauchy-like expansion@47# of the product of two series
@Eq. ~A7!# and this allows us to rearrange the terms in t
product in such a way that all the terms for which (k1k8)
and (k2k8) have the same values, are grouped together,
then perform the summation~this is also called the diagona
summation of the double series!. Thus we obtain

Rmn
p 5

4

~Dl!2

1

sinum sinun

3FA0C01(
l 51

N

AlCl1 (
l 50

N21

A2N2 lC2N2 l G ~A8!

with

A2N2 l5(
r 50

l

2 cos~N2r !um cos~N2 l 1r !un , ~A9!

Al5H (
r 50

l

2 cosrum cos~ l 2r !un2~coslum1coslun!J
1H (

r 50

N2 l

2 cos~N2r !um cos~N2 l 2r !un2coslumJ
1H (

r 50

N2 l

2 cos~N2 l 2r !um cos~N2r !un2coslunJ ,

~A10!

A05H (
r 50

N

2 cosrum cosrunJ 21. ~A11!

In Eqs. ~A10! and ~A11!, negative terms appear due to th
consideration of thed function in Eq.~A7!. The summation
in Eqs.~A9!–~A11! can now be carried out analytically. W
first consider the diagonal terms (m5n). Equation~A9! can
be rewritten as follows:

A2N2 l5(
r 50

l

$cos~2N2 l !um1cos~2r 2 l !um%

5~ l 11!cos~2N2 l !um1(
r 50

l

cos~2r 2 l !um .

~A12!
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The summation in Eq.~A12! can be easily obtained by rec
ognizing this as the real part of( r 50

l exp@i(2r2l)um#, which
is a geometrical series and can be summed by the stan
formulas. We now change the variable, 2N2 l 5s, and thus
obtain

As5~2N2s11!cossum

1
sin~2N2s11!um

sinum
~N11<s<2N!. ~A13!

Following the similar procedure, it can easily be shown t
the explicit summation in Eq.~A10! results in an expressio
exactly similar to Eq.~13!, whereas Eq.~A11! gives rise to
one-half of an expression similar to Eq.~13!. Therefore, Eq.
~A8! for diagonal terms can be rearranged as follows:

Rmm
p 5

4

~Dl!2

1

sin2 um
(
k50

2N S 12
dk0

2 D ck
p

3F ~2N2k11!coskum1
sin~2N2k11!um

sinum
G . ~A14!

We now proceed to evaluate the off-diagonal terms. Fom
Þn, Eq. ~A9! can be rewritten as follows:

A2N2 l5(
r 50

l

2 cos~N2r !um cos~N2 l 1r !un

3S cosum2cosun

cosum2cosun
D

5
1

cosum2cosun

3H (
r 50

l

cos~N2r 11!um cos~N2 l 1r !un

1(
r 50

l

cos~N2r 21!um cos~N2 l 1r !un

2(
r 50

l

cos~N2r !um cos~N2 l 1r 11!un

2(
r 50

l

cos~N2r !um cos~N2 l 1r 21!unJ . ~A15!

We now pull outr 50 terms from the first and the last sum
mation, andr 5 l terms from the second and the third sum
mation in Eq.~A15!, to find that the remaining terms ident
cally cancel. On substitutings52N2 l (N11<s<2N as 0
< l<N21), we thus obtain

As5cos~N11!um cos~N2s!un2cosNum cos~N2s11!un

2cos~N11!un cos~N2s!um

1cosNun cos~N2s11!um . ~A16!

Following a similar procedure, it can easily be shown th
the summation in Eq.~A10! gives rise to expressions simila
to Eq. ~A16!, whereas Eq.~A11! results in one-half of the
ard

t

t

expressions similar to Eq.~A16!. Therefore, Eq.~A8! for
off-diagonal terms can be rearranged to the following res

Rmn
p 5

4

~Dl!2

1

~cosum2cosun!

3Fcos~N11!um

sinum
(
k50

2N S 12
dk0

2 D ck
p cos~N2k!un

sinun

2
cosNum

sinum
(
k50

2N S 12
dk0

2 D ck
p cos~N2k11!un

sinun

2
cos~N11!un

sinun
(
k50

2N S 12
dk0

2 D ck
p cos~N2k!um

sinum

1
cosNun

sinun
(
k50

2N S 12
dk0

2 D ck
p cos~N2k11!um

sinum
G

~mÞn!. ~A17!

To make passage from Eq.~A7! to Eqs.~A14! and~A17!, we
have assumed that the filtered states obtained by trunca
the series in Eq.~A4! at N are sufficient to form a basis to
yield correct eigenvalues in the given window, by conve
tional matrix diagonalization.

APPENDIX B: MATRIX ELEMENTS
FOR DISCRETE-TIME FD

Here we present a discrete-time implementation of the
method, in the spirit of Ref.@19#. Let us first consider the
eigenvalue problem:

Ĥuf~x,em!&5emuf~x,em!&. ~B1!

It is easy to show by induction that Eq.~B1! also implies

f ~Ĥ!uf~x,em!&5 f ~em!uf~x,em!&, ~B2!

wheref (Ĥ) is a rational function of the formp(Ĥ)21q(Ĥ),
where p(Ĥ) and q(Ĥ) are either polynomials or transcen
dental functions with convergent power series expans
As explained in Appendix A, Eq.~B2! demands us
to consider the general matrix element,Rmn

p

5^x(x,Em)u@ f (Ĥ)#pux(x,En)&. As shown in Ref.@19#, it is

convenient to takee2 i ĤDt for f (Ĥ) (5R̂) in Eq. ~B2!, in
order to simplify the expression for the overlap and t
Hamiltonian matrices. Next we consider the discretization
Eq. ~14! in the following form:

ux~x,Em!&5 lim
T→`

E
2T

T

dt eiEmte2 i Ĥtuc~x,0!&

5 (
k50

N→`

ei ~EmDt !ke2 i ~ĤDt !kuc~x,0!&

5 (
k50

N→`

~R̂/Zm!kuc~x,0!&, ~B3!

where Zm5e2 i (EmDt)k. With Eq. ~B3!, the general matrix
element takes the following form:
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Rmn
p 5^x~x,Em!uR̂pux~x,En!&

5 (
k50

N

(
k850

N

Zm
2kZn

2k8
„R̂kc~x,0!uR̂puR̂k8c~x,0!…

5 (
k50

N

(
k850

N

Zm
2kZn

2k8
„c~x,0!uR̂k1k81puc~x,0!…

5 (
k50

N

(
k850

N

ck1k81pZm
2~k1k8!S Zm

Zn
D k8

. ~B4!

In Eq. ~B4!, we have introduced a complex symmetric inn
product~i.e., no complex conjugation!, which is appropriate
when complex symmetric operators are involved@48#. As
discussed in Appendix A, we can now carry out aCauchy-
like expansion@47# of the double series in Eq.~B4! and
perform the partial summation. Off-diagonal elements ta
the following form:

Rmn
p 5(

l 50

N

cl 1pZm
2 lF (

k850

l S Zm

Zn
D k8G

1 (
l 5N11

2N

cl 1pZm
2NZn

N2 lF (
k850

2N2 l S Zm

Zn
D k8G . ~B5!

The quantity within the square brackets in Eq.~B5!, is often
ev

, J

r,

m

.

f-

J.

ys
r

e

called the convolution of the original series. After summi
the geometrical series in Eq.~B5!, we finally obtain the fol-
lowing expression for off-diagonal (mÞn) elements:

Rmn
p 5

1

~Zm2Zn! F S Zm(
l 50

N

cl 1pZn
2 l D 2S Zn(

l 50

N

cl 1pZm
2 l D

2S Zm
2N (

l 5N11

2N

cl 1pZn
N2 l 11D

1S Zn
2N (

l 5N11

2N

cl 1pZm
N2 l 11D G . ~B6!

Similarly, we have the following expression for the diagon
elements:

Rmm
p 5(

l 50

N

cl 1pZm
2 lS (

k850

l

1D 1 (
l 5N11

2N

cl 1pZm
2 lS (

k850

2N2 l

1D
5(

l 50

N

cl 1pZm
2 l~ l 11!1 (

l 5N11

2N

cl 1pZm
2 l~2N2 l 11!

5(
l 50

2N

cl 1pZm
2 l~N2uN2 l u11!. ~B7!
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