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Spectral filters in quantum mechanics: A measurement theory perspective
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We present the time-domain theory of spectral filters, starting with the basic propositions of the theory of
measurement in quantum mechanics, and develop its parameter-free implementation in the traditional correla-
tion function as well as the filter diagonalizatiéRD) form. The present study unifies all the time-domain
spectral filter algorithms in the literature, under a single theme which is based on the notion of selective
measurements. For specific numerical purposes, we have selected Chebyshev polynomials for developing the
time propagator and this permits us to carry out the relevent time integrals fully analytically and obtain FD
equations in a numerically convenient form. We also argue that the FD method is a particular realization of the
general spectral filter goal and it is constrained, in general, by the time-energy uncertainty regime at least as
much as the correlation-function-based method. To contrast the performance of the correlation function and the
FD methods, we have carried out the detailed numerical experiments on a model system, which suggest that the
FD method needs almost as much time propagation as the correlation function method, in order to identify the
correct spectrum. The difference lies in the procedure for the exact location of eigenvalue positions, for which
the FD method employs a diagonalization step while the correlation function method involves the location of
zeros.

PACS numbe(s): 02.70—c, 02.60.Lj, 02.60.Ed, 03.65.Ge

[. INTRODUCTION belonging to the chosen window.” This appealing proposi-
tion was apparently first implemented for practical calcula-
The quantum description of physical and chemical pro-tions by Heller and co-workeif4.,2] within the semiclassical
cesses frequently demands an accurate knowledge of tHemmework. This method, through the innovation of Neu-
eigenspectrum of the corresponding system Hamiltonianhauser3-6], has come to be known as tfiger diagonal-
The conventional noniterative matrix diagonalization tech-ization (FD) method. The FD method originally utilized the
nigues are not suitable for this purpose, as most chemical arekact quantum evolution of the system and later it was also
physical systems of interest involve a large rank Hamil-recast in terms of the discrete time-dependent correlation
tonian. However, iterative diagonalization methddg., the function[6,19]. The FD method has been argued to be valid,
Lanczos reduction technigudéave been successfully used even when the dynamics underlying the correlation function
over the years. On the other hand, we frequently seek eigelis not quantum mechanicgb]. We note that various formu-
values and eigenvectors only within a relatively small speciations of the original FD propositiofi3], aside from the
tral window, such as those near the transition state or thosenplementation strategy, fundamentally differentiate only in
near the energy of the local mode overtones. The realizatiothe choice ofdamping functionsOf the damping functions,
that it may be possible to extract a small window from anythe Gaussiantype has been frequently utilized, though a
region of the spectrum of the Hamiltonian, usingectral more elaborate choice of damping functions has also been
filter, without solving the eigenvalue problem completely, made[6,27]. The FD method utilizes thepectral density
has witnessed a tremendous upsurge of interest in recenperator(SDO) as the filter operator. The SDO has also been
years [1-34. In general, spectral filter theory may be utilized by Kouri, Hoffman, and co-workergl1-13 for
broadly classified into two complementary streams, such asnplementation of the continuous correlation-function-based
those involving time-independent and time-dependent apspectral method.
proaches. In this context, as the eigenvalue problem is intrin- In this paper, we will be concerned with the fundamental
sically a time-independent issue in quantum mechanicgroperties of the SDO. The time-domain theory of spectral
Wyatt has proposed the use of the time-independent Gredilters based on the above proposition has been contrasted
function in conjunction with the traditional Lanczos reduc- with the traditional correlation-function-based time-
tion techniquelGFLA) to extract the eigenvalue information dependent spectral meth@86] and it has been qualitatively
near the test energy80—33. On the other hand, the advent argued that the time-domain spectral filter theory can bypass
of time-domain theory of spectral filters is due to an impor-the time-energy uncertainty constraint, and hence it is supe-
tant realization that “an arbitrary initial statassumed notto rior in numerical performancg5,20. We parenthetically
be orthogonal to any eigenstate of the systeafter evolving  note that the time-energy uncertainty principle dictates the
under the action of the Hamiltonian for r@latively short minimum time one has to propagate the wave packet in order
time, projects into the space spanned by the energies close to recover the eigenspectrum of the system Hamiltonian
the test energy, and various propagated wavepackets at difithfully, and this is also frequently known as teampling
ferent energies within a window serve as a basis for convertheorem[36] in communication problems. Whether the FD
tional matrix diagonalization, yielding thereby the spectrummethod can bypass the uncertainty constraint is a fundamen-
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tal issue, and this will be examined here in analytical as welbriginal arbitrary state is dependent on them. Since the states
as numerical terms. into which the system may jump are all eigenstates, an arbi-
In this paper, we develop the time-domain theory of specirary state is dependent on the eigenstates of the real dynami-
tral filters from themeasuremenperspectiveg[37-39 and  cal variable.
advance arguments that the FD method is a particular imple- These areconstructivepropositions and they provide al-
mentation of the general spectral filter goal. The measuregorithmic clues as to how the theory of spectral filters has to
ment perspective gives rise to a unified understanding obe built in quantum mechanics. We will also utilize the fact
various time-domain filter algorithms known in the literature that eigenstates of the system Hamiltonian form an orthogo-
and also clarifies the central issue of the role of the timenal set, but we will not assume the existence of the time-
energy uncertainty principle. For illustration, we have imple-dependent Schdinger equatiof TDSE). We first point out
mented a parametdarbitrary) free realization of the filter the meaning of the second assumption. It empowers us to
paradigm into the traditional continuous correlation functionanalyze the initial arbitrary state in an orthogonal reference
as well as the FD form, and compare their numerical perforspace spanned by the eigenvecta$x, e,,)) of the system
mance in detail. Hamiltonian. Without loss of generality, we assume the ref-
The organization of this paper is as follows. In Sec. I, weerence space to be of finite dimension. Thus we can write an
elaborate on the concept of spectral filters from the measurexrbitrary initial state(in the energy representatipas fol-
ment perspective in quantum mechanics, followed by varioutows:
approximations to the general filter operator and its represen-
tation in the orthogonal polynomial form. Implementation of _
the filter paradigm in the form of a correlation function as W(X'O»_% Alem)| B(x€m)), @
well as FD is presented in Sec. Ill. We discuss the details of
the model system studied here in Sec. IV, and in Sec. V wavhere A,,=(#(X, €y)|(x,0)) is the weight with which the
present the computational results. We conclude the presentmth eigenstate contributes to the initial wave packet. Thus
tion in Sec. VL. the second assumption allows us to consider the initial arbi-
trary state to be synthesized from the eigenstates of the sys
Il. THEORY tem. In order to extract the spectral information from
) . . ~ |#(x,0)), we resort to the first measurement assumption. To
In what follows, we discuss the basic physics underlyingclarify the meaning of measurement, we introduce the notion
the spectral filter concept, and outline the protocol basegf selective measurementfiltration, in which we imagine a
both on the traditional time correlation function and the fllterprocess that, when applied f¢(x,0)), selects only one of

and consistent comparison, we will adopt the Chebyshev

polynomials as the basic time propagation sysfd@l and @ measurement
rely on our ability to carry out the time-energy Fourier trans- I (2,0)) — 19(@,en)) @
formation fully analytically, without recourse to any damp- Thus a measurement always changes the state, the only ex-
ing function. The choice of Chebyshev polynomials is due toception being when the state itself is one of the eigenstates of
their extraordinary analytical properties, not shared by othethe real dynamical variabléhe Hamiltonian, in the present
classical orthogonal sets, and this eventually leads to a vemontex}, in which case the measurement does not change the
compact and numerically efficient formulation of the state. Mathematically, suchsalective measuremeatnounts

continuous-time FD method. to applying a projection operatoh (e,,). The application of
a projection operator oh/(x,0)) selects the eigenstate, as is
A. Selective measurements and spectral filters clear from the following implicit definition:

The theory of spectral filters can be viewed as originating -
from the basic propositions of the theory of measurement in A (€m)|#/(X,0) ={[ (X, €m) )(b(X, €m) [} (X, 0))
guantum mechanid87-39—an integral part of the Copen- =|A(em)| d(X, €m)) 3)
hagen doctrine, as elaborated in the classic treatise of Dirac " e
[37]. It will become clear later that the concept of “filter” The measurement paradigm can also be applied to the corre-
has a direct connotation with the act of measurement. In th@ytion function,
following, we state the basic assumptions underlying the

theory of measuremef87]. A _
(i) An act of measurement always causes the quantum (em)p(0)= (SOOI b0, em) K b(x, em [} 1(x,0))
system to jump into an eigenstate of the corresponding real =|A(en)|?. 4

dynamical variabléfor example, the Hamiltonian of the sys-
tem) that is being measured; that is, any result of a measurefhus the projection operator acting on the correlation func-
ment of a real dynamical variable is one of its eigenvaluestion, which is unity at zero time, filters the corresponding
Conversely, every eigenvalue is a possible result of measurespectral intensity and this also provides a valid avenue for
ment of the dynamical variable for some state of the quanspectral analysis.
tum system. Having established the conceptfifer through the notion

(i) If a certain real dynamical variable is measured with aof selective measuremente now need to formulate an ex-
system in an arbitrary state, the states into which the systemlicit and operational definition of the projection operator.
may jump on account of the measurement are such that th&/e note that Eq93) and(4) provide only anonconstructive
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assertion to this end. By “nonconstructive” we mean that . % .
the proposition is devoid of any practical value, but its non- S(E—H)= f_xdt g(E-mt

existence would lead to a logical contradiction. As we are

dealing with the energy eigenstates, it is obvious that a pro- X [Fourier transformation ofs(E—7)].

jection operator of the typ&(E — ), where is the Hamil- 5
tonian of the system anH is the energy at which the filter

operator is l_)eing applied, clearly satisfie_s the primary notion Equation(5) is an identity of fundamental importance, as
of the selective measuremead hence this would be a natu- s enables us to obtain various spectral filters of our choice.
ra_I choice for the spectral anegS|s of the quantum system. Iy Eg. (5), we have implicitly assumed that the argument of
this way, we see that the entire spectral filter problem essefne s operator does not have any time dependence, and this is
tially reduces to finding an appropriate representation of th@onsistent with the fact that the eigenstate of the system is a
delta operators(E—H). time-independent concept. Now, as a definite example, let us
We note that the above notion elective measurement consider  14\/mexd —(E—#)2/¢?] and 1f¢sinc(E
has been popular in interpretative quantum mechanics and in 711/¢) as approximations t6(E — ), the Fourier pairs of
fact Schwinger developed a formalism of quantum mechan\—Nhich are 1/ for |t|<T and 127 exp(—tI4T?) for T
ics and introduced a measurement symbtle,) and the =0 respectively. and thus we obtaqiTn frgm EE)
correponding measurement algelpg8]. Schwinger’'s mea- » Fesp Y, ’
surement symbol is identical to our elementary projection 1T
operator,A (€p,). 5appr0>(E_72{):_J dt eEte= it
m \/ﬁ .

B. Derivation of filters _ 1 J'“’ gt dEte-iHt
Having recognizeds(E — /) as the basic object underly- V2w J e
ing the spectral filter goal, we now focus upon its practical (in the limit T—o) (6)
representation. In the following discussion, we also advance ’

the reasoning leading t6(E—7) as the basis for various 1 (T
FD methods and we will contrast this with the correlation SEPPIONE _ )= —— dt
. FAE-H)

function approach. We note that the delta operad6E V2T J-7
—ﬂ) is identical to thespectral density operatofSDO) ) ) ) )
known through the work of Kouri and co-workei$1—13. Equation(6) states that filteration can be accomplished by
This operator refers to theelective measuremeprocess the Fourier transformation of an arbitrary state, evolved un-
here and we know that no measurement is, in general, operder e ', which is consistent with the time-dependent
tionally perfect{imperfection here lies in the construction of Schralinger equation. Noticeably, we have arrived at &).

the measuring apparatug(E_’}:[), and has nothing to do with jUSt the |Ogical extension of the two measurement as-
with the uncertainty principleand hence5(E—ﬂ) can, in sumptions. Equatiori7), on the other hand, represents the

practical realization, at best represent a certain limiting pro-':ourier transior:natizon with Gaussign d.amping. It we use
cess. That means that the applicationS¢E — 7) “forces” (Um) {I(E="H) +‘~7 ] as the approxmaﬂon o.f théqpera-
the initial arbitrary state to jump into the vicinity of the en- tor, we WOUIq Obt,aglm the Fourier transformaﬂon.Wlth €Xpo-
ergy eigenstateg(x,e,,), with ever-decreasing error,E( nential dampinge~° ™. As S!JCh’ E.Q(G) and Its variants like
—€m), in the norm. There are several functions which, in Eq. (7) have been the starting point .for various FD. methods
specific limits, mimick the behavior of thé function, and [3,6,12,18,2% We note that the application of E¢) in the

. A FD context is known as a “box filter,” otherwise the filter is
the typical examples are W2xp(—|E—H|/{), (Um){/I[(E  known with the corresponding damping function. It is now

—7:02+ 2?1, UiJmexd—(E-H)?{?], and 1h{sinc(E  apparent that only the sinc function, contrary to other ap-
—H]/¢) [where sinck)=sin(X)/x], in the limit {—0, and  proximations, gives rise to the simplest integral representa-
any of these approximations could be utilized to derive equation to the & operator, which does not involve any arbitrary
tions for the spectral filter. We notice that the paraméter ~ damping function, and therefore this has to be the most natu-
all these approximations @(E — 7) is merely the inverse of ral choice as the physical theory cannot be dependent on
the physical time T (this is implied from dimensional con- Some arbitrary parameter. In practice, however, the applica-
siderationy, as time and energy are conjugate variables irfion of a suitable damping function may be advantageous for
guantum mechanics, and therefore the “selective measuré&Pecific purposes. We will elaborate upon this point later on.
ment” demands the measurement process to be of “infinite”’Now, as time is operationally taken as a continuous variable,
duration, which in the present context essentially means € integrand in Eq(6) is a continuous function of time, and
continuous ever-ending limiting sequence. That is, as long a'€ range of this function goes, in principle, to infinity.
the measurement process is “on,” we can reach the eigenThereforg, Eq(6) is an instance of Fourier transformation of
state as close as we wish. The conjugacy of time and enerdffe function on the full line(—,+), the consequence of
also suggests that the Fourier integral theoféf could be  which is thats #P{E—H) is also, in principle, continuous.
applied here in order to obtain an integral representation ofhat is, the individual Fourier components in E&), E,

the approximation of thé operator. We thus write =(2mI/T)k, wherek is an integer, can be brought, in the

! Iy 2,472
elEte—IHte—t 14T ] (7)
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limit T—, as close as we wish. In this limit, a specific [36]. It must be emphasized that the use of a damping func-

functional value 8 ®P(E,— ), cannot be correlated any- tion [as in Eq.(7), for exampld does not, in any way, let us
more to a definite Fourier component, but it has to be conPYPass this uncertainty constraint. This point will be further

sidered as apectral densityand thuss ®(E — 7 repre- considered in the development of the FD method.

h | densi 411 The sianif ¢ We will now discuss the issues related to the implemen-
sents thespectral density operatdi1]. The significance of o401 of Eq.(6). In principle, one could use any short-time

the Fourier int(_egral thgorem is that we.can.resolve an arb'bropagator to generate the integrand in EB). at discrete
trary function in the time domaini(t), into its harmonic  times and carry out the integration numerically. However,
components, by constructing the continuous functionthe numerical integration is frought with difficulties as one
SEPAE—"H), which represents a spectral density. Wehas to take cognizance of tsampling theoremi36]. That is,
point out that the range of integration in E¢8) and(7) (i.e.,  the sampling intervalit has to be less than at leastr/E,
from —T to T, with limit T—c) assumes the validity of whereE=E—Eqyp is the total spectral range contained in
time-reversal symmetry, which is fully justified for the ei- the Hamiltonian. As Eq(6) involves an integration over
genvalue problems in quantum mechanics. In fact, the impotime, it would be very convenient to utilize a propagation
sition of time-reversal symmetry in quantum mechanics esmethod that splits the evolution operator " into a Hamil-
sentially amounts to a definite choice of tphase factar tonian part and a time part, so that one can attempt to carry
which can conveniently be taken as unity for eigenvalueout the time integral in Eq(6) or its variants like Eq(7)
problems[42]. fully analytically. In this context, a classical orthogonal
We now discuss the role of damping functions containingpolynomial-based recursive propagation method is an ideal
an arbitrary parameter, as manifested in Ef). We have choice. The choice of the orthogonal polynomial and the
already recognized E@6), which is a Fourier series, as the approximation of the5 operator would be largely dictated by
statement of the TDSE and therefore we need to understarr ability to carry out the time integral fully analytically,
the situations in which the use of the damping function isotherwise the ensuing numerical scheme would turn out to be
needed for the convergence of the series. The following amumerically less efficient and transpargd4]. In the follow-
gument is based on the studies of Lancztld. Ordinarily, a  ing, we consider the Chebyshev polynomial-based represen-
Fourier series means that we sum up an increasing number tftion of the evolution operat¢#0], in conjunction with Eq.
terms of the series by constantly adding one more term to thés). Thus we can write
previous terms, and if the sum uniformally converges, then

N— o ~
the coefficients of the series cannot be anything but the usual 7, - L ma—int H—\
Fourier coefficients as obtained by a definite integral. On the €~ — mz:O (2= Omo)(—1)"e™ "M Jn(tAN) T, )
other hand, if the function domain includes some singular (8)

point and the convergence is no longer unifdian example o

being the appearance of the so-called Gibb’s phenomenafhere A and A\ are the scaling parameters to adjust the
[41]), the overall convergence of the series may be enhancednge of the Hamiltoniarfy, to fall in the interval—1 to +1,

by adjusting the Fourier coefficients using certain suitable,s gemanded by the definition of the Chebyshev polynomial.
weight factors, which change as we go along the seriefjoy we substitute Eq(8) into Eq.(6) and carry out the time
(damping function It should, however, be noted that if the integral from 0 toT (with T—) to obtain the following
function is in fact exactly equal to the sum of a finite ”Umberexpression for the approximateoperator:

of (sayN) Fourier terms, then the ordinary way of summing

the serieqthat is, without using the damping functijowill R 2 o N

recover the function exactly aftét terms, while the use of SPPOAE—H)= H(l_ E) 12> (2—6m0)

the damping function willnever get the function exactly, m=0
unlessN increases to infinity. Thus, every approximation of
the & operator, which involves an arbitrary damping param-
eter, is generally a legitimate analytical proposition, in thewhich, on the application of time-reversal symmetry, yields
sense that in convergence proofs we are only interested in

what eventually happens to the series and we do not care . _

how many terms are needed for a certain accuracy. In prac- 0 """ {E—H)= A A= E)~ 2

tice, however, different approximations of thieoperator,

X[Tm(E)=iVo(E)]Tm(H), (9

owing to the presence of an arbitrary damping parameter, N _ _

will exhibit qualitatively different numerical behavior. The X 2 (2= 830) Tm(E)Ti(H).  (10)
use of damping functions in the filter context should be seen m=0

in this light.

Now, a remark on the so-callgiine-energy uncertainty HereE _andH are the normalized energy and Hamiltonian,

principle [43] is in order. It is clear that the time integration respectively.T(E) andV,(E) refer to the two linearly in-

in Eq. (6) can, in practical applications, be carried out only dependent solutions of the second-order differential equa-
for a finite interval(say,— T/2 to +T/2), and this sets a limit ~ tion, which Chebyshev polynomials of type | satisfy, and of
on the energy resolutiofmaximum 27/T) during spectral  Which only Ty, is a polynomial. We note that E¢7) cannot
analysis while using Eq6) or Eq. (7). This fact, obvious be integrated fully analytically with Eq(8) and hence it
from the Fourier integral theorem, is variously known as thewould not be possible to get a closed-form expression for the
time-energy uncertainty principler the sampling theorem Gaussian approximation fof(E—7) as in Egs.(9) and
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(10). It is clear from Eq.(9) that the polynomial feature is 9p(E 4 N 5
. . p( ) _ =\ —3/2 mO
lost in the absence of the time-reversal symmetry. — = (1-E) "R |1- =
JE (AN = 2
X[MTp 1(E) = (M= DETH(E)]Up, (12
I1l. IMPLEMENTATION
In this section, we discuss the continuous-time implemen-azp(E) 4 N

tation of spectral filters for correlation functions as well as —=——=——3(1— E)‘5’22 (1— @>[3m ET,_1(E)
. . . . . JE (AN) m=0 2
FD, and for this purpose we will utilize the sinc function
appr'OX|mat|qn to the propctlon operatiaf., Eq. (6}]: The +(m=1){(m=2)E2— (M+1)}T(E)JU.
continuous-time formulation is generally sufficient for
bound-state problems. However, it turns out that if we re- (13
strict the time integral only from 0 td (with T—o), the
discrete time implementation of the FD method may be useWe note that Eqs(12) and (13) have been obtained by dif-
ful [19] and therefore we will also address this issue. ferentiating a sort of “discontinuous” functiop(E) (in the
limit N—o), and hence their values will grow to “infinity”
asN becomes large. However, for the purpose of location of
A. Correlation function zeros, we can always scale Eq42) and (13) arbitrarily
; ; down, as we are not concerned with their actual large values.
Using Egs.(4) and (10), we obtain We also point out that Eqd1) is not properly normalized
4 o N S o and it should be normalized with the factor/2T for the
p(B)= 1w (1~ E)" Y2 (1— T) Tm(E)Um, (1) determination of spectral intensityA(e,)|?, where the total
m=0 propagation timel can be estimated by the fact thidtis
greater thanTAN, where N is the total number of terms
required in Eq(10) to obtain the well-resolved spectral fea-

where Uy, =(4(x,0)| Tn(H)[#/(x,0)). Here p(E) is a con-  tures of the Hamiltonian.
tinuous function of energy and this function, in the lirhit

—o0, has a “§-comb” structure with different peaks located
at E=e¢,, (Wheree,, is the mth eigenvalug and p(E) itself
equals the spectral intensityA(ey,)|?. We note thaip(E), The FD method is a practical realization of thelective
for finite N, will have the sinc function type structure. We measuremenparadigm, and Eq(6) or its variants like Eq.
thus see that in the continuous correlation function method(7) in conjunction with Eq.(3) serves as the starting point.
we directly filter the spectral intensity, and the energy loca-Using Egs.(3) and(6), we write

tion of the eigenstate is essentially a side product. In practi-

B. Filter diagonalization

cal calculations, one has to evaluétg, only once and store |X(x,E)>=/A\(E)|¢(x,O))

it. We can then, within a given energy window, sweep the

function p(E) to locate the energy position of the eigen- =| lim fT dteiEteiﬁt]llp(x'o»
states. The energy intervAlE at which one calculates(E) T T

should be such that one does not miss any eigenstate, which

meansAE should be smaller than the expected smallest ei- — lim jT dt eiEt|<,/;(x t) (14)
genvalue gap in the given energy window. The question now Tow T e

is, how many termsiN in Eq. (11), should we retain so that

we can faithfully identify all the eigenstates in a given en- ) ) ) o

ergy window? The numbeN essentially reflects the total Eduation(14) is not properly normalized and we will discuss
lengthT of the time propagation in E6), and this has to be this issue later. In Eq(14), we recognize i(x,t)) as the
larger thanTA\, as is evident from Eq(8). And the total time-evolved state and the time evolution itself is affected by
length of the time propgation itself has to satisfy the time-the operatore™ ", Also, E as well asH is independent of
energy uncertainty principle; that i$,has to be greater than time, in order to be consistent with E¢p). In this way, we
27/Ae, whereAe is the minimum eigenvalue gap within the recover the time-dependent ScHirmger equation, just with
given energy window. In practical realization, however, wethe logical extension of the measurement propositions. Now,
can adopt a more pragmatic approach. We know that th&q. (14) essentially states that the energy statex,E)) can
function p(E) will have maxima at the eigenvalue locations, be extracted from the time evolution of an arbitrary state by
along with the adjoining sinc structures which have continu-utilizing the Fourier integral theorem. The crux of the FD
ously diminishing amplitudes & grows to infinity. We can  method lies in an important observation that the integrand in
then compute the first and second derivative @) with Eq. (14) is highly oscillatory, and therefore reflects the pos-
respect to energy and superimpose this gu). The ei-  sibility of strong cancellation for a moderately large value of
genvalue locations are identified as the points where the firgt As time goes on, we expect smaller contributions from the
derivative passes through zero. In actual calculations, onenergy components away fro This phenomenon is some-
may use other methods, such as the Newton-Raphsdimes known as thédoss of phase coherencthe result of
method[44], to locate the roots ofp(E)/JE. The required which leads to the FD propositidi—3] “after a relatively
derivative expressions are as given below, short time the filtered statgy(x,E)) will span the space of
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guantum states with energies closeEpand several such now is how much time one has to propagate an initial arbi-
filtered states at a discrete set of energies within a giveirary state in Eq(14) for a faithful identification of all the
window can be used as a basis set to obtain the eigenvaluesgenvalues in the window, and does the method really allow
within the window, by conventional matrix diagonaliza- one to bypass the uncertainty principle. The FD proposition,
tion.” In this sense, the time propagation step in the FDas outlined above, does not make any such assertion to this
method acts as areconditionerof the basis for eventual end, and therefore we will reconsider Ed4). In fact, we
disentanglement of eigenstates by the diagonalization progrrived at Eq(14) through the logical extension of the mea-
cess. The filtered stat¢g(x,E)) are not expected to form an surement notion, and therefore, in the liffiits o, this only
orthogonal set and, in practical applications, one has t0 makgqserts “either we filter the eigenstates or we do not.” The

sure that the_ setis Qver_complete, that is, the size of th_e mfi‘l'miting process in Eq(14) is expected to be bounded by the
trix (L) we diagonalize is larger than the number of eigen-

values within the aiven window. Thus we express the ener time-energy uncertainty principle for a faithful filteration of
) give e b g)éigenstates, and this is merely the assertion of the Fourier
eigenstatd (X, €,,)) in terms of filtered states,

integral theorem. It is clear that if we do not exhaust the
L limiting process in Eq(14), we once again filter some arbi-
| (X, €m))= > Bimlx(X.E)), (15  trary states and these states may have nonzero spectral inten-
=1 sities only for the limited eigenstates close to the filter en-
ergy. However, no sweeping analytical assertion can be

and obtain the e!genv_alue p“’b'em n thg r_natrlx fo_rm as’made as to whether states thus obtained are sufficient for the
HB=SBe. Heree is a diagonal matrix containing the eigen-

values. and the Hamiltonian and overlap matrices are d faithful identification of all the eigenvalues in the window by
fined r,es ectively. as follows: P She diagonalization process. This issue is better settled by
' P y: ' systematic numerical experiments.

S m = (X%, Erm) | x (%, En) ) (16) So far the discussion was restricted to bound-state prob-
’ lems for which the imposition of time-reversal symmetry is
Mo e = (x(X,E )|7A1|X(X En)) 17) legitimate, and we utilized the continuous-time formulation
m,m’ r=m =m')/x

within the framework of Chebyshev polynomials. If we re-

In this overcomplete eigensystem, the overlap maSils  strict the time integration only from 0 @ (with T—), the
generally singular and therefore we can use, for exampled operator will contain a nonpolynomial terri,,, [cf., Eq.
singular value decompositiai8VD) [45] for this purpose. (9)], and the resulting overlap and Hamiltonian matrices will
Eigenvalues obtained by the FD method may not all beclearly be complex symmetric with complex eigenvalues—a
true eigenvalues of the system, and therefore it is mandatorsituation typically encountered for the resonance problems
to carry out an independent check to differentiate the spuriby the complex scaling method. In this situation, it will not
ous eigenvalues from the true ones. To this end, the magnbe possible to carry out partial summation of the double
tude of the vector, ®— e,)| (X, €n)), can be used as a S€res by the method of @auchy-like expansiof%7] as we

parameter to serve the accuracy of the computed results. TfV€ done in Appendix A, and therefore the resulting expres-

be specific, we can compute the error natre,, defined as ~ S1ONS for the overlap and the Hamiltonian matrices will no
’ " longer be in “numerically friendly” form. As shown in Ref.

follows [6: [19], it turns out that the discrete time implementation of the
(Afm)2:|<¢(xvem)|(ﬂ_ em)?| d(X, em)] FD method in this case may be preferred as it allows a com-
pact set of final equations for numerical purposes. This is
=|(B'H?B) mym— €2(B'SB) mnd- (18)  described in Appendix B. In any case, we have to bear in
mind that the discrete time sampling has to satisfy the sam-
Here, theH? matrix is defined as follows: pling theorem[36]; that is, the time interval has to be less
5 R than 27/Ae, whereAe is the total spectral range contained in
Hiw = (X(X, €m) [HAIX(X, €m))- (190 the Hamiltonian. In this situation, we are not bound to use a

5 polynomial expansion of the time evolution operator and any
It has been shown thaﬁ(&'m) represents the upper bound on short-time propagator can serve the purpose.
the true error of the eigenvalu¢d6]. For the purpose of

error estimation, one may also use different variational prin-

ciples, as suggested by Beck and Me}j&f|. IV. MODEL
The above discussion essentially completes the basic '
ideas involved in the FD method. Here, E¢B4)—(19) form In order to make a thorough test and compare spectral

the basic structure of the FD method, and the obvious quediter methods based on the correlation function with filter
tion that remains is as how efficiently can we cast the work-diagonalization, we need to have a flexible model so that we
ing equations for the matrix elemernggs.(16) and(17)]. It ~ can study various regions of the parameter space. To this end
is this stage that different strategies have been put forth ive have selected the model Hamiltonian as introduced by
the literaturg 6,18,19,25,27,34 In the present study, we uti- Wyatt[30]. The model system consists if bands of states,
lize Eq. (10) for the projection operator as required in Eq. with ng states in each band. The states within each band are
(14). A derivation of the overlap, Hamiltonian, and error relatively strongly coupled, with weaker coupling between
matrix elements is presented in Appendix A. states in different bands. The zeroth-order diagonal energies
Thus we see that the FD proposition offers an appealingvere chosen to lie in the intervid,1], so that the average
viewpoint, and in this context the most important questionspacing between successive states iaghy). The Hamil-
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tonian matrix elements are specified as follows:

for diago-=0.0001, andn,q=5. The eigenvalue distribution for this
nal energies,

model as obtained by exact diagonalization is shown in
Fig. 1.

Hijij=(—1A+(j—1)6, where 6<A;

V. RESULTS AND DISCUSSION

for intraband coupling, We first analyze the results obtained by the FD method.

The FD method utilizes two free parameters which have to
be adjusted in the numerical experiment, viz., the number of
Chebyshev termsa\ [2N in Eqg. (A8)], and the number of
basis functionsl. [Eq. (15)], in the given window. The num-
ber of Chebyshev terms required for an accurate determina-
tion of the eigenspectrum in a given window is directly re-
lated to the total propagation time, as we know that the series
in Eg. (8) has exponential convergence if the order of the
Bessel function is greater than its argument. In order to test
implicit, the model consists of six parameters, in whith the performance of the FD method, we have examined vari-
determines the density of states and the paranmejgiad-  ous spectral windows from different regions of the spectrum
justs the interband coupling relative to the intraband couas indicated in Fig. 1, and in what follows we present some
pling. In the present study, we choose the following valuesepresentative results. We first concentrate on the window
for the parameters: n,=10, ng=200,C=0.05,A=0.1,6  (1095-1102, for which we compare the FD results with the

Hijij-=Cexp(—|j—j']);
and for interband coupling,
Hijirjr=[Cl(nogli —i"[+ D) ]exp(—[j—j']),

wherei denotes the band indek=1,2,...n,, andj de-
notes the index for states in this bafges 1,2, ... ng. Asis

TABLE |. A comparison of exact and FD eigenvalues for the model Hamiltonian.

No. Exact (8100/282 (8100/30? (8200/282
1095 0.500 161 66 0.50016166  (0.05202 0.500 161 66 (0.18994 0.50016168 (0.146 17
0.500 33080 (27.33079

1096 0.500409 13 0.50040913  (0.05099 0.500409 15 (0.34096 0.500409 14 (0.09010
1097 0.500 663 68 0.50066368  (0.01037 0.500 663 68 (0.01683 0.500 663 68 (0.01390
1098 0.500925 29 0.50092529  (0.07403 0.500925 29 (0.08152 0.500 925 30 (0.08138
1099 0.50119397 0.50119397 (0.004 84 0.50119397 (0.004 82 0.50119397 (0.004 79
1100 0.501469 75 0.50146975 (0.00210 0.501469 75 (0.002 07 0.501 46975 (0.01193

0.501 497 05 (24.445 96
1101 0.501 75267 0.50175267  (0.00357 0.501 75267 (0.00369 0.501 75267 (0.00365
1102 0.50204277 0.50204277  (0.026 20 0.50204277 (0.03554 0.50204277 (0.04367

3(N/L) refers to the number of Chebyshev terms and the number of filtered states. TheAerot10® [Eq. (18)] is given in the
parentheses.
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TABLE Il. A comparison of exact and FD eigenvalues as a function of relative phase for the model Hamiltonian.
FD (relative phasg
No. Exact 1.10 1.00 0.90 0.80 0.75 0.70 0.60
1095 0.50016166 0.50016144 0.50014733 0.50016979 0.50020965 0.50024178
1096 0.50040913 0.50040853 0.50035613 0.50043393  0.500368 38 0.500 31325
1097 0.50066368 0.50066362 0.50064484 0.50066602 0.50065666 0.50065919 0.50067293  0.50061169
1098 0.50092529 0.50092117 0.50069910
1099 050119397 0.50119395 0.50119332 0.50119244 050117603 0.50119258 0.50122408 0.50110100
1100 0.50146975 0.50146975 0.50146963 0.50146933 0.50145738 0.50147187 0.50148879  0.50145758
1101 0.50175267 0.50175266 0.50175250 0.50175196 0.50170793 0.50176135 0.50178262  0.50176851
0.502 025 36
1102  0.50204277 0.50204306 0.50204141 0.50203781 0.50187698

#The relative phase is with reference to the minimum eigenvalue gap in the window.

exact ones in Table |. This window has a total of eight ei-Chebyshev termé\) are, in general, coupled parameters for
genvalues, and with several trials we found 28 filtered statelower values ofL, and beyond certaih the FD method is
(L=28) to be sufficient for an accurate determination of thegenerally dependent only dx.

spectrum. With 28 filtered states, we then systematically ex- We next examine a somewhat larger spectral window in
amined the convergence of the window eigenvalues as he eigenvalue range from 0.796 to 0.80873—170% This
function of the number of Chebyshev teriit$ in Eq.(A8),  window has a total of 33 eigenstates, and 50 filtered states
and found that 14 400 terms Kg are generally sufficient to (L) were found to be sufficient for an accurate determin-
identify the spectrumiwith the correct number of eigenval- ation of eigenvalues. Within this window, the average
ues and.the error estimate being smaller than the (a_lgenv_alll@Gan (largest/smallest, A€, /Aes,) €igenvalue gap is
gap, while 16 200 terms were necessary to obtain eight-digip.000 216 17(0.000 312 82/0.000 168 §9and 6500 Cheby-
accuracy with respect to eigenvalues obtained by direct dishey terms (RI=13000) were found to be sufficient for
agonalization. This result gives us some insight into the congonyergence of the eigenvalues. In Table I1l, we compare the
vergence of the FD method, as we expect the convergence t result for this window with the exact ondthe results

be dictated by the local eigenvalue gap in the given windowwith 7000 terms are shown to highlight the appearance of
Within this spectral window, the averagke,,q (largest/  spurious eigenvalugsWe immediately see that the total
smallest, A€, /A€esyg eigenvalue gap is 0.00026873 relative phase which the levels receive here is about 0.91,
(0.0002901/0.000247 47and for the present model sys- .71, and 1.31 when compared to the average, smallest, and
tem, the A and AN parameters are 0.472363615 andthe largest level spacing, respectively, in the window. Thus
0.493 222 455, respectively. Thus the 16 200 Chebyshev rdéhe performance of the FD method in this case seems to
cursions would have been sufficient to propagate the wavbover around the time-energy uncertainty regime and it is
packet at a time of abouf,,;=32 845 units, and this corre- apparently difficult to claim whether or not we have really
sponds to the relative phase which the levels receive withifbeen able to bypass the uncertainty constraint in any signifi-
this time[ (T,/27)* A €ayg/1arismd t0 be about 1.41/1.52/1.29, cant way.

which is larger than one oscillation. The time-energy uncer- We finally examine the window in the eigenvalue range
tainty principle predicts the relative phase to be larger tharirom 0.644 to 0.6821374—1407in Table IV. The feature of

1.0 for an accurate identification of eigenvalues. In Table Ilthis window is qualitatively different from the previous win-
we compare the FD predicted eigenvalues as a function afows; that is, the level spacing differs significantly in differ-
the relative phaséwhich has been computed with referenceent regions of the spectruifthe average, smallest, and the
to the smallest eigenvalue gap in the windoWhe number largest level gap being 0.00113931, 0.00034966, and
of filtered stategL) was taken to be 50. It is clear from Table 0.014 697 45, respectivelyThe number of filtered states re-

Il that one has to go beyond the time-energy uncertaintyguired for a faithful reproduction of the eigenvalueslis
regime(relative phase higher than }.for a reliable predic- =100 as compared to 50 in the previous wind@i673—

tion of eigenvalues. Thus we see that the FD method remainkr09, in spite of the fact that the number of states in both
within the bound of the uncertainty constraint, which is con-the windows is almost the same. With 7000 Chebyshev
trary to earlier claimg$3,20]. From Tables | and I, we also terms required in this case, the relative phase which the lev-
note the appearance of spurious eigenvalues when we i®ls receive is found to be about 2.57, 0.79, and 33.20, respec-
crease the number of Chebyshev recursions, which is remtively, when compared to the average, smallest, and the larg-
niscent of the well-known Lanczos method. However, spuri-est level spacing in the window. Thus the examples shown
ous eigenvalues also appear when we change the number leére clearly indicate that the behavior of the FD method is
filtered statesL) utilized in the reduced eigenvalue problem. solely guided by the local eigenvalue gap structure in the
With the FD method, these spurious eigenvalues appear to lggven window, and with reference to the smallest level gap,
easily identified if we set somewhat stringent criteria in thethe method may sometimes seem to bypass the uncertainty
computed error norm, as is clear from Table |. We have als@onstraint. Hence we conclude that the time-energy uncer-
found that the number of filtered statg9 and the number of tainty is lurking here in a somewhat indirect manner, and the
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TABLE Ill. A comparison of exact and FD eigenvalues for the scanned the correlation amplitude as a function of energy,
model Hamiltonian.

which is plotted in Fig. 2. Also shown in Fig. 2 are plots of
the first and the second derivatives of the correlation ampli-

No. Exact (700/50% tude[Egs.(12) and(13)], which have been scaled arbitrarily.
1673 0.796 075 29 079607520  (0.31551 This window ha:; 33 eige_nvalues and we can immediately see
1674 0.796 248 08 079624794  (0.42259 that the correlation funct_lon _does have 33 peal_<s. In fac_t, the
1675 0.796 420 28 0.796 420 26 (0.153 23 f|rst _and the second derlvatlves_of the correlation amplltyde
1676 0.796 591 88 079659188  (0.04872 in Fig. 2 shlow 35 _peaks, of which two peaks have vanish-
1677 0.796 762 90 079676290  (0.01908 ingly small mtens'mes and hence they are spurious. The ap-
pearance of spurious eigenvalues is thus seen as a common
1678 0.796 93336 0.796 933 36 (0.02089 feature for both FD and correlation function methods. In the
1679 0.797103 26 0.797103 25 (0.04699 limit of infinite time propagation, we would expect 33
1680 0.797 27260 0.79727260  (0.01504 peaks and the peak height would correspond to the signal
1681 0.797 44142 0.79744142  (0.007 36 intensity. Thus we see that the total time propagation re-
1682 0.797609 77 0.79760977  (0.00954 quired for the identification of the spectrum by the correla-
1683 0.797 77786 0.79777786  (0.00877 tion function method is similar to the one in the FD method.
1684 0.797 946 31 0.79794631  (0.01013 The essential difference now is in the exact location of the
1685 0.798 116 53 0.798 116 53 (0.016 59 eigenvalue, for which the correlation function method has to
1686 0.798 290 68 0.79829068  (0.004 45 rely on our ability to exactly locate the zeros of the first
1687 0.798 47094 0.79847094  (0.00319 derivative (in principle, there is no fundamental problgm
1688 0.798 658 69 0.798 658 69 (0.001 33 whereas the FD method implements matrix diagonalization
1689 0.798 854 44 0.798 854 44 (0.002 37 for this purpose.
1690 0.799 058 20 0.79905820  (0.12783 We finally make some remarks on the computation of the
0.79909478  (34.9643) spectral intensity,Ap=(#(X,em)|#(x,0)) [Eq. (1)]. This
1691 0.799 269 77 0.799 269 77 (0.001 95 computation re_quires that_E(]ll) be properly norr_nglized.
1692 0.799 488 93 0.79948893  (0.00030 As in the practical calculation, we employ only a finite num-
1693 0.799 715 49 0.799 715 49 (0.000 33 ber of Chebyshev terms and this essentially amounts to
1694 0799 949 33 079994933  (0.00114 finite-time propagation. Then we can utilize2T normal-
1695 0.800 190 34 0.80019034  (0.000 65 ization in Eq_.(6)_and estimater from the argument of thg
1696 0.800 438 47 0.800 438 47 (0.000 87 Bessel function in Eq(E_&). Comput_atlon of spectral_ intensi-
1697 0.800 693 68 0.80069368  (0.00009 ties by the _FD mth_od is al_so straightforward and it has been
1698 0.800 955 98 0.80095598  (0.00042 discussed in detail in the literatuf&9,27,34.
1699 0.801 225 36 0.801 225 36 (0.00065
1700 0.801 501 86 0.801501 86 (0.00045 VI. CONCLUSION
1701 0.801 78550 0.80178550  (0.00082 We have demonstrated in this study that the time-domain
1702 0.802076 35 0.80207635  (0.00033 theory of spectral filters may be viewed as originating from
1703 0.802 374 46 0.802 374 46 (0.00078 the notion ofselective measuremeint quantum mechanics,
1704 0.802 679 89 0.802679 89 (0.000 16 and different filter algorithms differ essentially in the way we
1705 0.80299271 0.80299271 (0.002 12 approximate the measurement operator, which is the

S-function operator. We have further shown thdégitimate

“(N/L) refers to the number of Chebyshev terms and the number ofyteqral representation of the measurement operator is pos-

filtered states. The errdxe,,x 10° [Eq. (18)] is given in the paren-

theses.

sible with the help of the Fourier integral theorem, and this
unifying theme has helped us to clarify the role of the time-
energy uncertainty principle to the numerical performance of

general claim of the FD method going beyond the unceryg fijter operator, which has been implemented here in the
tainty regime may be rather fortuitous.

We now turn to the correlation function realization of the 1o continuous correlation function and the FD methods
spectral filter method, and our objective is to evaluate thg,n, yijlize equivalent propagation times and they differ only

continuous correlation function as well as in the FD form.

number of propagation steps needed for a reliable identificap, the aigorithm used to locate the eigenvalues. From practi-
tion of the spectrum. We recall that the accurate reproductiopy| considerations, the diagonalization step in the FD method
of eigenvalues here would involve the location of zeros of;nhears to be more convenient than the location of zeros in
the first derivative of the correlation function, along with (o correlation function method. Thus we do not verify the

knowledge of the second derivative, and for this we can €Mzommonly held notion that the FD method can bypass the
ploy any appropriate method, for example the Newton-ine energy uncertainty constraint. Numerical experiments

Raphson method. Features of the correlation function itself,\ e shown the FD method to share some features with the
will give sufficient insight into the problem. As an example, \\all-known Lanczos reduction technique.

we have selected the window with eigenvalues ranging from
0.796 to 0.803 for comparison with the FD method. For this
window, the FD method required about 13000 Chebyshev
terms for the determination of eigenvalues. We have em- This work was supported in part by the Natural Science
ployed the same number of Chebyshev terms in(Efy.and  Foundation and the Robert Welch Foundation.
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TABLE IV. A comparison of exact and FD eigenvalues for the model Hamiltonian.

No. Exact (350071007 (3500/50?
1374 0.644 211 66 0.644 211 66 (0.01574 0.644 199 66 (0.87386
1375 0.644 892 39 0.644 892 39 (0.00082 0.644877 28 (2.02175
1376 0.645 55100 0.645 55100 (0.00014 0.645857 67 (8.01062
1377 0.646 184 81 0.646 184 81 (0.00002
1378 0.646 793 16 0.646 793 16 (0.00003 0.646 716 34 (5.687 86
1379 0.647 38035 0.647 38035 (0.000 07 0.647 15232 (9.98340
0.647712 86 (10.13501
1380 0.647 956 80 0.647 956 80 (0.00008 0.648 06153 (6.11186
1381 0.648 534 36 0.648 534 36 (0.000 07
1382 0.64912070 0.64912070 (0.00009 0.649119 64 (0.43236
1383 0.64971916 0.64971916 (0.00012 0.649 71588 (1.03555
1384 0.650331 27 0.650331 27 (0.00009 0.650 328 80 (1.05142
1385 0.650958 16 0.650958 16 (0.00009 0.650 954 92 (1.36104
1386 0.651601 07 0.651601 07 (0.00010 0.65158210 (2.27936
1387 0.652 261 38 0.652 261 38 (0.00012 0.652 260 22 (0.95725
1388 0.65294073 0.65294073 (0.00008 0.65294042 (0.55102
1389 0.653 64106 0.653 64106 (0.000 05 0.653 64097 (0.32583
1390 0.654 364 70 0.654 364 70 (0.00007 0.654 364 65 (0.27375
1391 0.655114 47 0.655114 47 (0.00009 0.655114 44 (0.21177%
0.655591 57 (72.278 46
1392 0.655893 88 0.655893 88 (0.000 05 0.655893 88 (0.060 85
1393 0.656 707 42 0.656 707 42 (0.00012 0.656 707 42 (0.05300
1394 0.657 560 92 0.657 560 92 (0.000 05 0.657 560 92 (0.023 27
1395 0.658 462 27 0.658 462 27 (0.00002 0.658 462 27 (0.058 02
1396 0.659422 69 0.659422 69 (0.00007 0.659 422 69 (0.00153
1397 0.660459 12 0.660459 12 (0.00003 0.660459 12 (0.00056
1398 0.661 599 69 0.661 599 69 (0.00008 0.661 599 69 (0.00032
1399 0.662898 73 0.662898 73 (0.00007 0.662898 73 (0.00022
1400 0.664 497 63 0.664 497 63 (0.000 03 0.664 497 63 (0.000 27
1401 0.67919508 0.67919508 (0.000 47 0.67919509 (0.02554
1402 0.67978214 0.67978214 (0.002 27 0.67981527 (2.68379
1403 0.68026578 0.680 26578 (0.000 66 0.680 266 06 (0.218 27
1404 0.68069543 0.680 70161 (0.75384
1405 0.681 090 00 0.681 09003 (0.051 87
1406 0.68145919 0.68145921 (0.04100 0.681 384 89 (2.854 2%
1407 0.681 808 85 0.681 808 88 (0.126 93 0.681 74035 (4.28040
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3(N/L) refers to the number of Chebyshev terms and the number of filtered states. Tha 5ol 0® [Eq.
(18)] is given in the parentheses.

APPENDIX A: MATRIX ELEMENTS
FOR CONTINUOUS-TIME FD

In the following, we evaluate the general matrix element,
R =(x(%,Em)|(H)?|x(x,E,)), from which we can recover
Here we present a derivation of the overlap, Hamiltonianthe individual matrix elementSy,, Hmn, andH?,, by spe-
and error matrix elementEgs. (16), (17), and (19)] with  cializing with p=0, 1, and 2, respectively. Taking E(L0)
respect to the filtered states, Ed4). Since{=ANH+ X, as the representation of the_ projection (_)perator req.uired in
the required matrix elements can be written as follows: ~ E£d: (14), we have the following expression for the filtered

States:
Smn=<X(XaEm)|X(XaEn)>v (Al) 4 N—o0 6k0 COSkOm _
B B |X(XaEm)>:H|ZO ( —T)WTK(H)W(X,O)),
Hmn=ANX(X,En)[H|X(X,Ep)) +ASmn, (A2 (A4)

2 _ 2 )2 +2NH. —(N)2 ) —
Hinn= (AN S (6 Em) [ (F) Y (%, En)) 20 Himn= (M) S where co9),,=E,. Thus the matrix elemeR?, , can be writ-
(A3) ten as follows:
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FIG. 2. The correlation amplitudgop panel and its first(cen-

tral panel and second derivativébottom panel as a function of

energy. The intensity is plotted in arbitrary units.

R2 = (X%, Em) | (H)P|x(X,Ep))
16 NZ” N*“( 5ko>

> X

TSN =
S| coskd,, coskd,
"2 | sin6,siné,

X (p(%,0)| Te(H) Ty (H)[T1(H) 1P| (x,0)).
(A5)

By u_tilizing_the property of C_hebyshev polynomials,
2T (H) T (H) =T 4 (H)+ Ty (H), it is straightforward

to show that

Te(H) T ([ To(H)IP=3[UL, . (H)+UP_, . (H)]

(AB)

with 2UP(H)=[ Ty p(H)+ T p(H)]. Thus Eg.(A5) can
be written as

N—o N—ow 5 5
ko k’0

b 2 2 [ B
2 coskd,, cosk’d,,

sin#,,sin 6, (A7)

p
(Chrir HChier)
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with cP=(x(x,E)|UR(H)|x(X,E,)). The double summa-
tion in Eq. (A7) can be further simplified as shown by Man-
delshtam and Tayldr19]. Before we proceed, we first note
that the right-hand side of EgA7) is not a finite sum, but a
short-hand way of writing a complicated double limit. Since
the addition is a step-by-step process, the quantities to be
added must first be arranged in a sequence and there is no
unique rule for selecting the order in which they are to be
taken. It is well known that the limit of the sum of terms of

a conditionally convergent series may depend upon the order
in which the terms are taken but that the terms of an abso-
lutely convergent series can be arranged arbitrarily. Assum-
ing the absolute convergence of seriéd), we can employ

a Cauchy-like expansiof47] of the product of two series
[Eq. (A7)] and this allows us to rearrange the terms in the
product in such a way that all the terms for whidhHk")

and k—k') have the same values, are grouped together, and
then perform the summatiafhis is also called the diagonal
summation of the double serie§ hus we obtain

P 4 1
mn(AN)? sin@p,siné,
N N—-1
X A0C0+|Zl AC+ |Zo Aon—1Con—y| (A8)
with
|
AZN,,zzo 2 cogN—r1)6,codN—I+r)6,, (A9)

|
E 2 cosr 0,,cogl—r)6,—(cosl b,,+ cosl en)]

2 cogN—r)0,,codN—I—r)6,—cosl em]

+ 2cogN—1—-r)f,cogdN—r)6,—coslb,;,
(A10)
N
AO:{E 2 COSY f,,, cOST Hn]—l. (A11)
r=0

In Egs. (A10) and (All), negative terms appear due to the
consideration of thes function in Eq.(A7). The summation
in Egs.(A9)—(A11l) can now be carried out analytically. We
first consider the diagonal termmE&n). Equation(A9) can
be rewritten as follows:

|
Aoy 1= ZO {cog2N—1)6,,+cog2r —1) 8}

|
=(I+1)cog2N—1)6,,+ ZO cog2r—1)6,,

(A12)
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The summation in EqA12) can be easily obtained by rec- expressions similar to EqA16). Therefore, Eq.(A8) for
ognizing this as the real part & _, exdi(2r—1)6,], which  off-diagonal terms can be rearranged to the following result:
is a geometrical series and can be summed by the standard

formulas. We now change the variabldN21=s, and thus RP = 4 1

obtain mn(AN)? (coS6y,— cosb,,)

As=(2N—s+1)cossé,,

cogN+1)6,, 2N (1 5k0) pcos{N—k)an
R m — O ep——"

sin(2N—s+1)6,, sinfn k=0 2 siné,
- (N+1<ss<2N). (A13) N
Sin 6, cosNé, S ( 5k0) 5 CoAN—k+1)6,
2 - 2ep——1"
Following the similar procedure, it can easily be shown that sinfm (=0 2 sindy,
the explicit summation in Eq/A10) results in an expression 2N
exactly similar to Eq(13), whereas Eq(A11) gives rise to _ COS{'\.H 1)On (1_ %) cP COS(N_ K) O
one-half of an expression similar to Ed.3). Therefore, Eq. sind,  =o 2 /7% sing,

(A8) for diagonal terms can be rearranged as follows:

2N
cosNé, 5ko) cogN—k+1)6,,
P 4 - (1 @) p sindy, kEO( 27K sin O,

Rom= A2 sz o - Ck
(AN)? sin? 0, 2 (m#n). (A17)

sin(2N—k+1)6,,
sin 6,

X| (2N—k+1)cosk 8+

}_ (A14) To make passage from E@A7) to Egs.(A14) and(Al17), we

have assumed that the filtered states obtained by truncating
the series in Eq(A4) at N are sufficient to form a basis to
yield correct eigenvalues in the given window, by conven-
tional matrix diagonalization.

We now proceed to evaluate the off-diagonal terms. riRor
#n, Eq.(A9) can be rewritten as follows:

Aon_i= >, 2CcogN—r)6,cogN—1+r1)6, APPENDIX B: MATRIX ELEMENTS

r=0 FOR DISCRETE-TIME FD
C0S¢p,— COSH, Here we present a discrete-time implementation of the FD
c0S6,,— COSH, method, in the spirit of Ref{19]. Let us first consider the

L eigenvalue problem:
~ cosf,,— cosb, H|p(X, €m)) = €ml B(X, €m)). (B1)
! It is easy to show by induction that E(B1) also implies

X4 > cogN—r+1)6,,codN—1+r)6, A
=0 F(H)| d(X, €m)) =T (€m)| A(X, €m)), (B2)
[

+> cogN—r—1)6,,codN—I+r)8, wheref () is a rational function of the formp () ~1q(H),

r=0

where p(H) and q(7) are either polynomials or transcen-
[ dental functions with convergent power series expansion.
— > cogN—r)8,cofN—I+r+1)6, As explained in Appendix A, EQ.(B2) demands us
r=0 to consider the general matrix elementRP
| =(X(X,Em)[f(F) 1P| x(x,E,)). As shown in Ref[19], it is
— > codN—1)0,cogN—I+r—1)8,1. (A15)  convenient to take "t for f(7) (=R) in Eq. (B2), in
r=0 . . A
order to simplify the expression for the overlap and the
We now pull outr =0 terms from the first and the last sum- Hamiltonian matrices. Next we consider the discretization of

mation, andr = terms from the second and the third sum- EG- (14) in the following form:

mation in Eq.(A15), to find that the remaining terms identi- T .

cally cancel. On substituting=2N—I(N+1<s<2N as 0 |x(X,Em)) = lim f dt €Emte™ 71| y(x,0))
<|<N-1), we thus obtain T =T

N— o0

As=cogN+1)6,codfN—s)f,—cosNb,,cogN—s+1)6, _ E e‘(EmA”"e*‘<ﬁ‘“>"|¢//(x 0)
—cogN+1)6,codN—s)b, k=0

N—

+ N N—s+1 . Al A

cosNé cogN=s+1)bm (AL0 = 3 (Rizpu(x0), (83)
Following a similar procedure, it can easily be shown that _
the summation in EA10) gives rise to expressions similar where Z,,= e~ (EmA0k Wwith Eq. (B3), the general matrix

to Eq. (A16), whereas Eq(A1l) results in one-half of the element takes the following form:
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RP _<X(X E, |§p|X(X,En)> called the cqnvolutl_on Qf the original series. Aft_er summing
the geometrical series in EEB5), we finally obtain the fol-
N lowing expression for off-diagonahf+ n) elements:

=2 2 ¥z K (REp(x,0)|[RPIRY g(x,0))

N
N N -1
, L RP = Z 2 c )—(z > ¢z )
= 2 222K W0 RK P (x,0) " (Zn=Zn) ot " e
Ow=o 2N
N N K | »-N N-I+1
3 [ Z (Zm E CI+pzn )
2 2 Ck+k’+pzm(k+k)<z_m) . (B4) I=N+1
k= =0 n

In Eq. (B4), we have introduced a complex symmetric inner (B6)
product(i.e., no complex conjugationwhich is appropriate
when complex symmetric operators are invol@d]. As
discussed in Appendix A, we can now carry ouCauchy-  Similarly, we have the following expression for the diagonal
like expansion[47] of the double series in EqB4) and  elements:

perform the partial summation. Off-diagonal elements take

the following form:

2N
—N N—I+1
zZN > o pZh )
I=N+1

Rmm=IZN C+ pZnm (E 1)+ 2 CipZm (2N2|1)

2N
=2 ClipZm (|+1)+ Z CroZm “l(2N=-1+1)

2N-1 Zm K’ “
> (Z—) ] (BS)

5[5

K =

N
mn— IZO Cl+pzr;1

=z

o

—N—N-I
+ E c|+p Z,
k'=0 2N

= Z(N=|N=I]+1). B7
The quantity within the square brackets in EB5), is often ; +p ¢ | I+ ®7)
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